how to calculate how much data can be embeded into an image - steganography

I want to know how much data can be embedded into an image of different sizes.
For example in 30kb image file how much data can be stored without distortion of the image.

it depends on the image type , algoridum , if i take a example as a 24bitmap image to store ASCII character
To store a one ASCII Character = Number of Pixels / 8 (one ASCII = 8bits )

It depends on two points:
How much bits per pixel in your image.
How much bits you will embed in one pixel .
O.K lets suppose that your color model is RGB and each pixel = 8*3 bits (one byte for each color), and you want embed 3 bits in one pixel.
data that can be embedded into an image = (number of pixels * 3) bits

If you would use the LSB to hide your information this would give 30000Bits of available space to use. 3750 bytes.
As the LSB represents 1 or 0 into a byte that gets values from 0-256 this gives you in the worst case scenario that you are going to modify all the LSBs distortion of 1/256 that equals 0,4%.
In the statistical average scenario you would get 0,2% distortion.
So depends on which bit of the byte you are going to change.

Related

Simulate Camera in Numpy

I have the task to simulate a camera with a full well capacity of 10.000 Photons per sensor element
in numpy. My first Idea was to do it like that:
camera = np.random.normal(0.0,1/10000,np.shape(img))
Imgwithnoise= img+camera
but it hardly shows an effect.
Has someone an idea how to do it?
From what I interpret from your question, if each physical pixel of the sensor has a 10,000 photon limit, this points to the brightest a digital pixel can be on your image. Similarly, 0 incident photons make the darkest pixels of the image.
You have to create a map from the physical sensor to the digital image. For the sake of simplicity, let's say we work with a grayscale image.
Your first task is to fix the colour bit-depth of the image. That is to say, is your image an 8-bit colour image? (Which usually is the case) If so, the brightest pixel has a brightness value = 255 (= 28 - 1, for 8 bits.) The darkest pixel is always chosen to have a value 0.
So you'd have to map from the range 0 --> 10,000 (sensor) to 0 --> 255 (image). The most natural idea would be to do a linear map (i.e. every pixel of the image is obtained by the same multiplicative factor from every pixel of the sensor), but to correctly interpret (according to the human eye) the brightness produced by n incident photons, often different transfer functions are used.
A transfer function in a simplified version is just a mathematical function doing this map - logarithmic TFs are quite common.
Also, since it seems like you're generating noise, it is unwise and conceptually wrong to add camera itself to the image img. What you should do, is fix a noise threshold first - this can correspond to the maximum number of photons that can affect a pixel reading as the maximum noise value. Then you generate random numbers (according to some distribution, if so required) in the range 0 --> noise_threshold. Finally, you use the map created earlier to add this noise to the image array.
Hope this helps and is in tune with what you wish to do. Cheers!

anyone know 10-bit raw rgb? about omnivision

i'm using Omnivision ov5620
http://electronics123.net/amazon/datasheet/OV5620_CLCC_DS%20(1.3).pdf
this is datasheet.
than, you can see the Output Format 10-bit digital RGB Raw data.
first, i know RGB raw data is bayer array.
so, 10-bit RGB mean each channel of 1024 scale? range is 0~1023?
or 8-bit RGB each channel and four-LSB[2:0] is new fifth pixel data?
please refer the image
which is correct?
They pack every four adjacent 10-bit pixels (0..1023) of the line into 5 sequential bytes, where each of the first 4 bytes contains the MSB part of the pixel, and the 5th byte contains LSBs of all four pixels packed together into one byte.
This is convenient format because if you want to convert it to RGB8 you just ignore that fifth byte.
Also each displayed line begins with the packer header (PH) byte and terminates with the packer footer (PF) byte. And the whole frame begins with the frame start (FS) byte and terminates with the frame end (FE) byte.

Meaning of NSOpenGLPFAColorSize for NSOpenGLPixelFormat

I'm unclear as to what value to set for NSOpenGLPFAColorSize when creating an NSOpenGLPixelFormat. From the documentation it states:
Value is a nonnegative buffer size specification. A color buffer that most closely matches the specified size is preferred. If unspecified, OpenGL chooses a color size that matches the screen.
But does this mean the number of bits per pixel? Or bits per component? For example, if it were set 24 and interpreted as bits per pixel then that would mean that each RGBA color would have 6-bits per component for a total of 24-bits for the entire RGBA pixel.
However, if it is to be interpreted as bits per component then that would mean 24-bits for each of the red, green, blue and alpha components to make a 96-bit RGBA pixel.
I'm inclined to believe that it means bits per component as the values I've seen set in sample code ranges from 8, 16, 24, 32 and everything but 24 makes sense when interpreted as bits per component. It would be nice though to have some definitive answer.
Note: Edited to reflect that pixels in OpenGL are RGBA not RGB.
After scouring the documentation further I came across the NSOpenGLPFAColorFloat attribute, which according to the documentation:
A Boolean attribute. If present, this attribute indicates that only renderers that are capable using buffers storing floating point pixels are considered. This should be accompanied by a NSOpenGLPFAColorSize of 64 (for half float pixel components) or 128 (for full float pixel components). Note, not all hardware supports floating point color buffers thus the returned pixel format could be NULL.
With that additional information it must mean bits per pixel.
I did some experimenting as well, setting NSOpenGLPFAColorSize to each of 8, 16, 24 & 32 and then checking what I got back. In each case I was returned a pixel format with NSOpenGLPFAColorSize set to 32 - meaning 32-bits per RGBA pixel. Just passing NSOpenGLPFAColorFloat with nothing set for the Color Size is enough to get back a pixel format with 64-bits per pixel.

How to convert 32 bit PNG to RGB565?

How can I accomplish this? A programmatic solution (Objective-c) is great, but even a non-progarmmatic one is good.
I have pixelmator -> But that doesn't give you the option. I can't seem to do it with Preview either.
I have tried googling, but haven't been able to find a solution so far. The only tool I have been able to use to do this is TexturePacker, but that creates a sprite sheet.
You can use libpng to convert the PNG image to three-byte (8:8:8) RGB. Then you can downsample to the 5:6:5 16-bit color values of RGB565. If r, g, and b are the respective 8-bit colors (stored in an unsigned char type), then the 16-bit RGB565 value is:
((r >> 3) << 11) | ((g >> 2) << 5) | (b >> 3)
You can improve a tad on this by rounding instead of chopping, being careful to not overflow the values. You can also force the green value to be equal to the blue and red values when they are all equal in the original 8-bit values. Otherwise it is possible to have colors that were originally gray inadvertently take on color after conversion.
Create Bitmap Context with color RGB565 using Quartz, paint your PNG on this context, save this bitmap context to file.
PNG does not support a RGB565 packing. You can always apply a posterize to the image (programatically or with ImageMagick or with any image editor), which amounts to discard the lower significant bits in each channel. When saving to PNG, you will still be saving 8 bits per channel (unless you use a palette), but even then you will get an appreciable reduction in size, because of the PNG compression.
A quick example: original:
after a simple posterize with 32 levels (equivalent to a RGB555) applied with XnView
The size goes from 89KB to 47KB, with a small quality loss.
In case of synthetic images with gradients, the quality loss could be much more noticiable (banding).
I received this answer from the creator of texture packer:
you can do it from command line - see
http://www.texturepacker.com/uncategorized/batch-converting-images-to-pvr-or-pvr-ccz/
Just adjust the opt and set output to .png instead of pvr.ccz
Make sure that you do not overwrite your source images.
According to Wikipedia, which is always right, the only 16-bit PNG is a greyscale PNG. http://en.wikipedia.org/wiki/Portable_Network_Graphics
If you just add your 32-bit (alpha) or 24-bit (no alpha) PNG to your project as normal, and then set the texture format in Cocos2D, all should be fine. The code for that is:
[CCTexture2D setDefaultAlphaPixelFormat:kCCTexture2DPixelFormat_RGB565];

Weird arguments in UIColor colorWithRed:green:blue:alpha:

When checking this method, I was expecting for red, green and blue to be in the 0-255 range. Instead, it's in 0-1.
Am I the only one who thinks this is weird?
Is there any reason not o use the more common 0-255 values for RGB, or even hex numbers (as in html)?
In my opinion this is not weird. Both 0-255 and 0.0-1.0 levels are widely used in different platforms. You can always convert that by using something like this:
#define FLOAT_COLOR_VALUE(n) (n)/255.0
The reason sometimes RGB values are represented as float values rather than 0 to 255 is because 0 to 255 assumes you are using 8 bits to represent each colour component and hence have to use 24 bits for each colour in your frame buffers. This may not be the case if you are using displays that only support 256 colours in total or more than 16 million etc.
In theory then can be an infinite number of shades of red, green or blue. The number of bits you use to represent them depends on how accurate you need to represent colour and how much memory you have on graphics cards to represent images etc.
For many cases 0 to 255 is fine. But there is another world out there where it isn't fine, and for those devices / accurate rendering requirements, floating point numbers provide a much needed alternative.