All-
I'm trying to determine which SQL databases are currently being used the most (as well as what applications are requesting information from them).
Is there a log analyzing tool? Or something built into SQL server that could help me achieve this?
Ideally I'd like to show a map of server usage and understand which applications are actually hitting them.
Thanks!
sys.dm_db_index_usage_stats shows exactly how many time each index/table was read/scanned/updated since the server started up. This is the most important piece of information since everything else (IO, RAM, CPU) can be ultimately traced to these operations. The one information not revealed from here is blocking and contention, for which a good starting point is sys.dm_os_wait_stats. And finally there is sys.dm_exec_query_stats which will drill down to the individual query CPU and execution times.
If you right-click on the server in Management Studio you will see a 'Reports' option. There are a lot of built in reports which might give you what you need (the 'Server Dashboard' report in particular shows which databases are consuming the most CPU and I/O).
Alternatively the Profiler provides a lot of (perhaps too much) valuable data.
Related
We're having some queries in an Azure SQL database that are occasionally running very slowly. The issue has been difficult to properly diagnose, as the same queries will run fine at other times, even when the server is under a similar load.
To help, I'd like to be able to view log information for the server. If I could see a list of transactions, by time, and their outcome (completed, terminated/rolled back, etc) I believe it would be helpful. Several other SQL pages seem to allude to log-files you can access, but since this is an Azure SQL instance, there isn't a physical server I can just download a file from.
I know I can query sys.event_log to see when particular events are occurring (and in fact, I do see a high amount of deadlocks around our problem times), but I'm unaware of any way to see what query's were being handled at the time of these locks.
I'd like to be able to view log information for the server. If I could see a list of transactions, by time, and their outcome (completed, terminated/rolled back, etc) I believe it would be helpful.
The log information you are trying to view is not helpfull.
You can view slowly running queries running using the same manner like on premises using DMV's
You can also enable query store ,which can you show you different stages of query .This i think will help you more in troubleshooting slow queries and is not tied to Premium Databases only
I'm currently running an instance of MS SQL Server 2014 (12.1.4100.1) on a dedicated machine I rent for $270/month with the following specs:
Intel Xeon E5-1660 processor (six physical 3.3ghz cores +
hyperthreading + turbo->3.9ghz)
64 GB registered DDR3 ECC memory
240GB Intel SSD
45000 GB of bandwidth transfer
I've been toying around with Azure SQL Database for a bit now, and have been entertaining the idea of switching over to their platform. I fired up an Azure SQL Database using their P2 Premium pricing tier on a V12 server (just to test things out), and loaded a copy of my existing database (from the dedicated machine).
I ran several sets of queries side-by-side, one against the database on the dedicated machine, and one against the P2 Azure SQL Database. The results were sort of shocking: my dedicated machine outperformed (in terms of execution time) the Azure db by a huge margin each time. Typically, the dedicated db instance would finish in under 1/2 to 1/3 of the time that it took the Azure db to execute.
Now, I understand the many benefits of the Azure platform. It's managed vs. my non-managed setup on the dedicated machine, they have point-in-time restore better than what I have, the firewall is easily configured, there's geo-replication, etc., etc. But I have a database with hundreds of tables with tens to hundreds of millions of records in each table, and sometimes need to query across multiple joins, etc., so performance in terms of execution time really matters. I just find it shocking that a ~$930/month service performs that poorly next to a $270/month dedicated machine rental. I'm still pretty new to SQL as a whole, and very new to servers/etc., but does this not add up to anyone else? Does anyone perhaps have some insight into something I'm missing here, or are those other, "managed" features of Azure SQL Database supposed to make up the difference in price?
Bottom line is I'm beginning to outgrow even my dedicated machine's capabilities, and I had really been hoping that Azure's SQL Database would be a nice, next stepping stone, but unless I'm missing something, it's not. I'm too small of a business still to go out and spend hundreds of thousands on some other platform.
Anyone have any advice on if I'm missing something, or is the performance I'm seeing in line with what you would expect? Do I have any other options that can produce better performance than the dedicated machine I'm running currently, but don't cost in the tens of thousand/month? Is there something I can do (configuration/setting) for my Azure SQL Database that would boost execution time? Again, any help is appreciated.
EDIT: Let me revise my question to maybe make it a little more clear: is what I'm seeing in terms of sheer execution time performance to be expected, where a dedicated server # $270/month is well outperforming Microsoft's Azure SQL DB P2 tier # $930/month? Ignore the other "perks" like managed vs. unmanaged, ignore intended use like Azure being meant for production, etc. I just need to know if I'm missing something with Azure SQL DB, or if I really am supposed to get MUCH better performance out of a single dedicated machine.
(Disclaimer: I work for Microsoft, though not on Azure or SQL Server).
"Azure SQL" isn't equivalent to "SQL Server" - and I personally wish that we did offer a kind of "hosted SQL Server" instead of Azure SQL.
On the surface the two are the same: they're both relational database systems with the power of T-SQL to query them (well, they both, under-the-hood use the same DBMS).
Azure SQL is different in that the idea is that you have two databases: a development database using a local SQL Server (ideally 2012 or later) and a production database on Azure SQL. You (should) never modify the Azure SQL database directly, and indeed you'll find that SSMS does not offer design tools (Table Designer, View Designer, etc) for Azure SQL. Instead, you design and work with your local SQL Server database and create "DACPAC" files (or special "change" XML files, which can be generated by SSDT) which then modify your Azure DB such that it copies your dev DB, a kind of "design replication" system.
Otherwise, as you noticed, Azure SQL offers built-in resiliency, backups, simplified administration, etc.
As for performance, is it possible you were missing indexes or other optimizations? You also might notice slightly higher latency with Azure SQL compared to a local SQL Server, I've seen ping times (from an Azure VM to an Azure SQL host) around 5-10ms, which means you should design your application to be less-chatty or to parallelise data retrieval operations in order to reduce page load times (assuming this is a web-application you're building).
Perf and availability aside, there are several other important factors to consider:
Total cost: your $270 rental cost is only one of many cost factors. Space, power and hvac are other physical costs. Then there's the cost of administration. Think work you have to do each patch Tuesday and when either Windows or SQL Server ships a service pack or cumulative update. Even if you don't test them before rolling out, it still takes time and effort. If you do test, then there's a second machine and duplicating the product instance and workload for test.
Security: there is a LOT written about how bad and dangerous and risky it is to store any data you care about in the cloud. Personally, I've seen way worse implementations and processes on security with local servers (even in banks and federal agencies) than I've seen with any of the major cloud providers (Microsoft, Amazon, Google). It's a lot of work getting things right then even more work keeping them right. Also, you can see and audit their security SLAs (See Azure's at http://azure.microsoft.com/en-us/support/trust-center/).
Scalability: not just raw scalability but the cost and effort to scale. Azure SQL DB recently released the huge P11 edition which has 7x the compute capacity of the P2 you tested with. Scaling up and down is not instantaneous but really easy and reasonably quick. Best part is (for me anyway), it can be bumped to some higher edition when I run large queries or reindex operations then back down again for "normal" loads. This is hard to do with a regular SQL Server on bare metal - either rent/buy a really big box that sits idle 90% of the time or take downtime to move. Slightly easier if in a VM; you can increase memory online but still need to bounce the instance to increase CPU; your Azure SQL DB stays online during scale up/down operations.
There is an alternative from Microsoft to Azure SQL DB:
“Provision a SQL Server virtual machine in Azure”
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-provision-sql-server/
A detailed explanation of the differences between the two offerings: “Understanding Azure SQL Database and SQL Server in Azure VMs”
https://azure.microsoft.com/en-us/documentation/articles/data-management-azure-sql-database-and-sql-server-iaas/
One significant difference between your stand alone SQL Server and Azure SQL DB is that with SQL DB you are paying for high levels of availability, which is achieved by running multiple instances on different machines. This would be like renting 4 of your dedicated machines and running them in an AlwaysOn Availability Group, which would change both your cost and performance. However, as you never mentioned availability, I'm guessing this isn't a concern in your scenario. SQL Server in a VM may better match your needs.
SQL DB has built in availability (which can impact performance), point in time restore capability and DR features. You have the option to scale up / down your DB based on your usage to reduce the cost. You can improve your query performance using Global query (shard data). SQl DB manages auto upgrades and patching and greatly improves the manageability story. You may need to pay a little premium for that. Application level caching / evenly distributing the load, downgrading when cold etc. may help improve your database performance and optimize the cost.
First off, I'm not even sure this is possible. One of my co-workers is requesting that I help him retrieve performance metrics from a Microsoft SQL Server 2008 database using a remote connection and a SQL query.
Specifically, we are looking for stuff like database memory usage and CPU usage. Is this stored in a table somewhere that I can easily just SELECT it from?
I've tried googling this but mainly all I come up with are ads for products that do SQL performance monitoring. I realize we could use perfmon in Windows to get this data, but that's not what he's looking for. Also remote WMI gathering of perfmon metrics is out. It has to be a remote SQL query - some product limitation I won't get into in detail. :)
Even a definitive "This is not possible" is a valid answer.
Thanks in advance.
There is DBCC MEMORYSTATUS to get a ton of memory information.
DBCC statements in general are full with useful information about your SQL Server.
SO Answer on how you can "build" your own taskmon for SQL Server.
Another great source for information about server state are Dynamic Management Views.
Knock yourself out.
To get the sort of info you want, you'll need to use SQL Server's performance/system monitor counters. See the MSDN article Monitoring Resource Usage (System Monitor) for details:
If you are running Microsoft Windows server operating system, use
the System Monitor graphical tool to measure the performance of
SQL Server. You can view SQL Server objects, performance counters,
and the behavior of other objects, such as processors, memory, cache,
threads, and processes. Each of these objects has an associated
set of counters that measure device usage, queue lengths, delays,
and other indicators of throughput and internal congestion.
[And yes...you can access peformance counters remotely (assuming you have the requisite permissions]
I am working on SQL Server 2008R2 and 2012 Denali Monitoring Project in this I want to find out all PerfMon counters and its details I mean which perfmon counter used for what purpose.
I did try on Google and MSDN but i was not able to get that table which provides the details of all SQL Server PerfMon counters.
From following query I got all perfmon counters list but I am not able to find the details of each and every PerfMon counters.
SELECT *
FROM sys.dm_os_performance_counters
What are you trying to monitor? Monitoring everything is not really a feasible plan. Both SQL Server 2008 R2 and Denali come with the management data warehouse(MDW), and if you have enterprise, the utility control point(UCP) is available. These are monitoring tools built into SQL Server to save the information in several of the DMV's(sys.dm_os_performance_counters included). The information is polled at a certain interval (generally 15 seconds, but you can change) and is saved into the respective database for reporting and inspection at your leisure. One of the reasons this information is polled and saved is because the counters are for specific use, meaning some counters increment from the beginning of the install and many others are reset when SQL Server is restarted. CPU ticks is one I know that needs at least 2 points of data to see what the load on the cpu is. Not sure if this will help you in your endeavor, but if it does , then cool
This said, there are hundreds of SQL Server perfomance counters, If you look in perfmon, when you bring up a SQL counter, there is a description available below, telling you what exactly it does. If you can not find the monster list somewhere, I would try to use powershell to extract all sql counters and their respective descriptions. I would not try to get the information from SQL because it isn't there, it is in the BOL, but not as a list that I have ever seen. Plus to add to problem, not all of the counters are very well documented.
This will give you All SQL related counters in perfmon. Hope this helps. Still working on pulling the description. Don't know powershell that well.
Get-Counter -listSet SQL | %{$_.counter}
there are supposed to be asteriks around the word SQL, but it's formatting to italics, and I'm new so I don't know how to get around that yet.
Hi I have a web application with nhibernate talking to the database.
The application is running very slow due to lot of chatty db calls that nhibernate is doing.
I want to run a profiler or something similar that can give some stats example
number of db trips.
table names and times accessed.
I saw one of the products called nhprof . I am wondering if there is something open source or free available out there or some other technique that i can use to meet the goal here.
Edit: I am using SQL Server 2005 .
If you just want to know the 2 things you mention, you can create a log4net appender to find the information you want. I use a http module that adds the query information to the html in a web application when running in debug mode. If you want real statistics or more information than in the example, nhprof might be worth the money.
The NHibernate statistics are available as ISessionFactory.Statistics and ISession.Statistics. For the basic stats you describe, this
That said, NHProf does more and is well worth the price.