Why is average disk seek time one-third of the full seek time? - file-io

I have read in many books and papers, considering disk performance, that the average seek time is roughly one-third of the full seek time, but no one really offers any explanation about that. Where does this come from?

The average is calculated mathematically using calculus.
We use the very basic formula for calculation of average.
Average seek time = (Sum of all possible seek times)/(Total no. of possible seek times)
The disk is assumed to have N number of tracks, so that these are numbered from 1...N
The position of the head at any point of time can be anything from 0 to N (inclusive).
Let us say that the initial position of the disk head is at track 'x' and the final position of the disk head is at track 'y' , so that x can vary from 0 to N and also, y can vary from 0 to N.
On similar lines as we defined average seek time, we can say that,
Average seek distance = (Sum of all possible seek distances)/(total no. of possible seek distances)
By definition of x and y,
Total no. of possible seek distances = N*N
and
Sum of all possible seek distances = SIGMA(x=0,N) SIGMA(y=0,N) |x-y|
= INTEGRAL(x=0,N)INTEGRAL(y=0,N) |x-y| dy dx
To solve this, use the technique of splitting modulus of the expression for y = 0 to x and for y = x to N. Then solve for x = 0 to N.
This comes out to be (N^3)/3.
Avg seek distance = (N^3)/3*N*N = N/3
Average seek time = Avg seek distance / seek rate
If the seek time for the from position 0 to track N takes 't' seconds then seek rate = N/t
Therefore, avg seek time = (N/3)/(N/t) = t/3
Reference:
http://pages.cs.wisc.edu/~remzi/OSFEP/file-disks.pdf
Page-9 gives a very good answer to this.

Related

How the complexity of the following code is O(nlogn)?

for(i=1;i<=n;i=i*2)
{
for(j=1;j<=i;j++)
{
}
}
How the complexity of the following code is O(nlogn) ?
Time complexity in terms of what? If you want to know how many inner loop operations the algorithm performs, it is not O(n log n). If you want to take into account also the arithmetic operations, then see further below. If you literally are to plug in that code into a programming language, chances are the compiler will notice that your code does nothing and optimise the loop away, resulting in constant O(1) time complexity. But only based on what you've given us, I would interpret it as time complexity in terms of whatever might be inside the inner loop, not counting arithmetic operations of the loops themselves. If so:
Consider an iteration of your inner loop a constant-time operation, then we just need to count how many iterations the inner loop will make.
You will find that it will make
1 + 2 + 4 + 8 + ... + n
iterations, if n is a square number. If it is not square, it will stop a bit sooner, but this will be our upper limit.
We can write this more generally as
the sum of 2i where i ranges from 0 to log2n.
Now, if you do the math, e.g. using the formula for geometric sums, you will find that this sum equals
2n - 1.
So we have a time complexity of O(2n - 1) = O(n), if we don't take the arithmetic operations of the loops into account.
If you wish to verify this experimentally, the best way is to write code that counts how many times the inner loop runs. In javascript, you could write it like this:
function f(n) {
let c = 0;
for(i=1;i<=n;i=i*2) {
for(j=1;j<=i;j++) {
++c;
}
}
console.log(c);
}
f(2);
f(4);
f(32);
f(1024);
f(1 << 20);
If you do want to take the arithmetic operations into account, then it depends a bit on your assumptions but you can indeed get some logarithmic coefficients to account for. It depends on how you formulate the question and how you define an operation.
First, we need to estimate number of high-level operations executed for different n. In this case the inner loop is an operation that you want to count, if I understood the question right.
If it is difficult, you may automate it. I used Matlab for example code since there was no tag for specific language. Testing code will look like this:
% Reasonable amount of input elements placed in array, change it to fit your needs
x = 1:1:100;
% Plot linear function
plot(x,x,'DisplayName','O(n)', 'LineWidth', 2);
hold on;
% Plot n*log(n) function
plot(x, x.*log(x), 'DisplayName','O(nln(n))','LineWidth', 2);
hold on;
% Apply our function to each element of x
measured = arrayfun(#(v) test(v),x);
% Plot number of high level operations performed by our function for each element of x
plot(x,measured, 'DisplayName','Measured','LineWidth', 2);
legend
% Our function
function k = test(n)
% Counter for operations
k = 0;
% Outer loop, same as for(i=1;i<=n;i=i*2)
i = 1;
while i < n
% Inner loop
for j=1:1:i
% Count operations
k=k+1;
end
i = i*2;
end
end
And the result will look like
Our complexity is worse than linear but not worse than O(nlogn), so we choose O(nlogn) as an upper bound.
Furthermore the upper bound should be:
O(n*log2(n))
The worst case is n being in 2^x. x€real numbers
The inner loop is evaluated n times, the outer loop log2 (logarithm basis 2) times.

Determining optimal bins to bin the data

I have X,Y data which i would like to bin according to X values.
However, I would like to determine the optimal number of X bins that satisfy a condition based on the resulting bin intervals and average Y of each bin. For example if i have
X=[2,3,4,5,6,7,8,9,10]
Y=[120,140,143,124,150,140,180,190,200]
I would like to determine the best number of X bins that will satisfy this condition: Average of Y bin/(8* width of X bin) should be above 20, but as close as possible to 20. The bins should also be integers e.g., [1,2,..].
I am currently using:
bin_means, bin_edges, binnumber = binned_statistic(X, Y, statistic='mean', bins=bins)
with bins being pre-defined. However, i would like an algorithim that can determine the optimal bins for me before using this.
One can easily determine it for a small data but for hundreds of points it becomes time consuming.
Thank you
If you NEED to iterate to find optimal nbins with your minimization function, take a look at numpy.digtize
https://numpy.org/doc/stable/reference/generated/numpy.digitize.html
And try:
start = min(X)
stop = max(X)
cut_dict = {
n: np.digitize(X, bins=np.linspace(start, stop, num=n+1))
for n in range(min_nbins, max_nbins)}
#input min/max_nbins
avg = {}
Y = pd.Series(Y).rename('Y')
avg = {nbins: Y.groupby(cut).mean().mean() for nbins, cut in cut_dict.items()}
avg = pd.Series(avg.values(), index=avg.keys()).rename('mean_ybins').to_frame()
Then you can find which is closest to 20 or if 20 is the right number...

Big O notation and measuring time according to it

Suppose we have an algorithm that is of order O(2^n). Furthermore, suppose we multiplied the input size n by 2 so now we have an input of size 2n. How is the time affected? Do we look at the problem as if the original time was 2^n and now it became 2^(2n) so the answer would be that the new time is the power of 2 of the previous time?
Big 0 is not for telling you the actual running time, just how the running time is affected by the size of input. If you double the size of input the complexity is still O(2^n), n is just bigger.
number of elements(n) units of work
1 1
2 4
3 8
4 16
5 32
... ...
10 1024
20 1048576
There's a misunderstanding here about how Big-O relates to execution time.
Consider the following formulas which define execution time:
f1(n) = 2^n + 5000n^2 + 12300
f2(n) = (500 * 2^n) + 6
f3(n) = 500n^2 + 25000n + 456000
f4(n) = 400000000
Each of these functions are O(2^n); that is, they can each be shown to be less than M * 2^n for an arbitrary M and starting n0 value. But obviously, the change in execution time you notice for doubling the size from n1 to 2 * n1 will vary wildly between them (not at all in the case of f4(n)). You cannot use Big-O analysis to determine effects on execution time. It only defines an upper boundary on the execution time (which is not even guaranteed to be the minimum form of the upper bound).
Some related academia below:
There are three notable bounding functions in this category:
O(f(n)): Big-O - This defines a upper-bound.
Ω(f(n)): Big-Omega - This defines a lower-bound.
Θ(f(n)): Big-Theta - This defines a tight-bound.
A given time function f(n) is Θ(g(n)) only if it is also Ω(g(n)) and O(g(n)) (that is, both upper and lower bounded).
You are dealing with Big-O, which is the usual "entry point" to the discussion; we will neglect the other two entirely.
Consider the definition from Wikipedia:
Let f and g be two functions defined on some subset of the real numbers. One writes:
f(x)=O(g(x)) as x tends to infinity
if and only if there is a positive constant M such that for all sufficiently large values of x, the absolute value of f(x) is at most M multiplied by the absolute value of g(x). That is, f(x) = O(g(x)) if and only if there exists a positive real number M and a real number x0 such that
|f(x)| <= M|g(x)| for all x > x0
Going from here, assume we have f1(n) = 2^n. If we were to compare that to f2(n) = 2^(2n) = 4^n, how would f1(n) and f2(n) relate to each other in Big-O terms?
Is 2^n <= M * 4^n for some arbitrary M and n0 value? Of course! Using M = 1 and n0 = 1, it is true. Thus, 2^n is upper-bounded by O(4^n).
Is 4^n <= M * 2^n for some arbitrary M and n0 value? This is where you run into problems... for no constant value of M can you make 2^n grow faster than 4^n as n gets arbitrarily large. Thus, 4^n is not upper-bounded by O(2^n).
See comments for further explanations, but indeed, this is just an example I came up with to help you grasp Big-O concept. That is not the actual algorithmic meaning.
Suppose you have an array, arr = [1, 2, 3, 4, 5].
An example of a O(1) operation would be directly access an index, such as arr[0] or arr[2].
An example of a O(n) operation would be a loop that could iterate through all your array, such as for elem in arr:.
n would be the size of your array. If your array is twice as big as the original array, n would also be twice as big. That's how variables work.
See Big-O Cheat Sheet for complementary informations.

How to calculate average velocity for different acceleration?

I want to calculate average speed of the distance traveled using gps signals.
Is this formula calculates correct avg speed?
avgspeed = totalspeed/count
where count is the no.of gps signals.
If it is wrong,please any one tell me the correct formula.
While that should work, remember that GPS signals can be confused easily if you're in diverse terrain. Therefore, I would not use an arithmetic mean, but compute the median, so outliers (quick jumps) would not have such a big effect on the result.
From Wikipedia (n being the number of signals):
If n is odd then Median (M) = value of ((n + 1)/2)th item term.
If n is even then Median (M) = value of [((n)/2)th item term + ((n)/2
+ 1)th item term ]/2

Is there an iterative way to calculate radii along a scanline?

I am processing a series of points which all have the same Y value, but different X values. I go through the points by incrementing X by one. For example, I might have Y = 50 and X is the integers from -30 to 30. Part of my algorithm involves finding the distance to the origin from each point and then doing further processing.
After profiling, I've found that the sqrt call in the distance calculation is taking a significant amount of my time. Is there an iterative way to calculate the distance?
In other words:
I want to efficiently calculate: r[n] = sqrt(x[n]*x[n] + y*y)). I can save information from the previous iteration. Each iteration changes by incrementing x, so x[n] = x[n-1] + 1. I can not use sqrt or trig functions because they are too slow except at the beginning of each scanline.
I can use approximations as long as they are good enough (less than 0.l% error) and the errors introduced are smooth (I can't bin to a pre-calculated table of approximations).
Additional information:
x and y are always integers between -150 and 150
I'm going to try a couple ideas out tomorrow and mark the best answer based on which is fastest.
Results
I did some timings
Distance formula: 16 ms / iteration
Pete's interperlating solution: 8 ms / iteration
wrang-wrang pre-calculation solution: 8ms / iteration
I was hoping the test would decide between the two, because I like both answers. I'm going to go with Pete's because it uses less memory.
Just to get a feel for it, for your range y = 50, x = 0 gives r = 50 and y = 50, x = +/- 30 gives r ~= 58.3. You want an approximation good for +/- 0.1%, or +/- 0.05 absolute. That's a lot lower accuracy than most library sqrts do.
Two approximate approaches - you calculate r based on interpolating from the previous value, or use a few terms of a suitable series.
Interpolating from previous r
r = ( x2 + y2 ) 1/2
dr/dx = 1/2 . 2x . ( x2 + y2 ) -1/2 = x/r
double r = 50;
for ( int x = 0; x <= 30; ++x ) {
double r_true = Math.sqrt ( 50*50 + x*x );
System.out.printf ( "x: %d r_true: %f r_approx: %f error: %f%%\n", x, r, r_true, 100 * Math.abs ( r_true - r ) / r );
r = r + ( x + 0.5 ) / r;
}
Gives:
x: 0 r_true: 50.000000 r_approx: 50.000000 error: 0.000000%
x: 1 r_true: 50.010000 r_approx: 50.009999 error: 0.000002%
....
x: 29 r_true: 57.825065 r_approx: 57.801384 error: 0.040953%
x: 30 r_true: 58.335225 r_approx: 58.309519 error: 0.044065%
which seems to meet the requirement of 0.1% error, so I didn't bother coding the next one, as it would require quite a bit more calculation steps.
Truncated Series
The taylor series for sqrt ( 1 + x ) for x near zero is
sqrt ( 1 + x ) = 1 + 1/2 x - 1/8 x2 ... + ( - 1 / 2 )n+1 xn
Using r = y sqrt ( 1 + (x/y)2 ) then you're looking for a term t = ( - 1 / 2 )n+1 0.36n with magnitude less that a 0.001, log ( 0.002 ) > n log ( 0.18 ) or n > 3.6, so taking terms to x^4 should be Ok.
Y=10000
Y2=Y*Y
for x=0..Y2 do
D[x]=sqrt(Y2+x*x)
norm(x,y)=
if (y==0) x
else if (x>y) norm(y,x)
else {
s=Y/y
D[round(x*s)]/s
}
If your coordinates are smooth, then the idea can be extended with linear interpolation. For more precision, increase Y.
The idea is that s*(x,y) is on the line y=Y, which you've precomputed distances for. Get the distance, then divide it by s.
I assume you really do need the distance and not its square.
You may also be able to find a general sqrt implementation that sacrifices some accuracy for speed, but I have a hard time imagining that beating what the FPU can do.
By linear interpolation, I mean to change D[round(x)] to:
f=floor(x)
a=x-f
D[f]*(1-a)+D[f+1]*a
This doesn't really answer your question, but may help...
The first questions I would ask would be:
"do I need the sqrt at all?".
"If not, how can I reduce the number of sqrts?"
then yours: "Can I replace the remaining sqrts with a clever calculation?"
So I'd start with:
Do you need the exact radius, or would radius-squared be acceptable? There are fast approximatiosn to sqrt, but probably not accurate enough for your spec.
Can you process the image using mirrored quadrants or eighths? By processing all pixels at the same radius value in a batch, you can reduce the number of calculations by 8x.
Can you precalculate the radius values? You only need a table that is a quarter (or possibly an eighth) of the size of the image you are processing, and the table would only need to be precalculated once and then re-used for many runs of the algorithm.
So clever maths may not be the fastest solution.
Well there's always trying optimize your sqrt, the fastest one I've seen is the old carmack quake 3 sqrt:
http://betterexplained.com/articles/understanding-quakes-fast-inverse-square-root/
That said, since sqrt is non-linear, you're not going to be able to do simple linear interpolation along your line to get your result. The best idea is to use a table lookup since that will give you blazing fast access to the data. And, since you appear to be iterating by whole integers, a table lookup should be exceedingly accurate.
Well, you can mirror around x=0 to start with (you need only compute n>=0, and the dupe those results to corresponding n<0). After that, I'd take a look at using the derivative on sqrt(a^2+b^2) (or the corresponding sin) to take advantage of the constant dx.
If that's not accurate enough, may I point out that this is a pretty good job for SIMD, which will provide you with a reciprocal square root op on both SSE and VMX (and shader model 2).
This is sort of related to a HAKMEM item:
ITEM 149 (Minsky): CIRCLE ALGORITHM
Here is an elegant way to draw almost
circles on a point-plotting display:
NEW X = OLD X - epsilon * OLD Y
NEW Y = OLD Y + epsilon * NEW(!) X
This makes a very round ellipse
centered at the origin with its size
determined by the initial point.
epsilon determines the angular
velocity of the circulating point, and
slightly affects the eccentricity. If
epsilon is a power of 2, then we don't
even need multiplication, let alone
square roots, sines, and cosines! The
"circle" will be perfectly stable
because the points soon become
periodic.
The circle algorithm was invented by
mistake when I tried to save one
register in a display hack! Ben Gurley
had an amazing display hack using only
about six or seven instructions, and
it was a great wonder. But it was
basically line-oriented. It occurred
to me that it would be exciting to
have curves, and I was trying to get a
curve display hack with minimal
instructions.