How to release memory of a retained object - objective-c

This is one of my method.
- (void)getSearchResultsByKeyword:(NSString *)keyword
searchOptions:(NSArray *)searchOptions
searchGroupsInResult:(NSArray *)searchGroupsInResult
{
_searchKeyword = [keyword retain];
_searchOptions = [searchOptions retain];
_searchGroupsInResult = [searchGroupsInResult retain];
[_searchResultsGroups removeAllObjects];
[_searchResultsGroupsIndexToNameMap removeAllObjects];
_pageNo = 1;
[[NSNotificationCenter defaultCenter] postNotificationOnMainThreadName:SearchResultsRetrievingStartLodingNotification
object:self];
[_dataProvider startGettingSearchResultsByKeyword:self.searchKeyword
searchOptions:_searchOptions
searchGroupsInResult:_searchGroupsInResult
pageNo:_pageNo
delegate:self];
}
In my method I have called retain on the objects which are parameters. So I have owned the object and has increased the retain count. So my problem is, how do I decrease the retain count after the
[_dataProvider startGettingSearchResultsByKeyword:self.searchKeyword
searchOptions:_searchOptions
searchGroupsInResult:_searchGroupsInResult
pageNo:_pageNo
delegate:self];
call. ( [keyword release] or [_searchKeyword release] ) ??
In my header file I have declared the _searchOptions as a private instance and _searchKeyword as a readonly property. In my implementation file, I have released both instances in dealloc.
I ran Analyze tool and it did not show this thing as an issue. But I have a doubt on it.
So, please show me a necessary way to work on this thing.
I'm working on XCode4 and iOS 4.3.
Thanks.

jaydee3's answer is correct. I would add that you really should use #properties with synthesized accessors. Then, instead of setting your instance variables directly, use the accessor methods. That way you can encapsulate all of the memory management of your instance variables in the accessor methods. This has the advantage of being more readable, much less error prone, and makes your code easier to modify in the future.
So, in your .h (or in a class extension in your .m if the properties should be "private"):
#property (nonatomic, copy) NSString *searchKeyword;
In your .m:
- (void)dealloc
{
self.searchKeyword = nil;
[super dealloc];
}
#synthesize searchKeyword = _searchKeyword;
Finally, in your -getSearchResultsByKeyword:searchOptions:searchGroupsInResult: method:
self.searchKeyword = keyword;
instead of
_searchKeyword = [keyword retain];
Now you don't have to worry about releasing or retaining searchKeyword. The setter method generated by the #synthesize directive will take care of it for you. I suggest reading Apple's documentation on Declared Properties.

Since you are assigning to an ivar, you have to retain it. This is correct.
Releasing it within dealloc is also correct. But thats not enough. Two things:
1) It's better to copy strings, rather than retain them. So use _searchKeyword = [keyword copy];. (This is also retained. So the retainCount is 1 after that.)
2) Also there is a problem, when you call your method the second time. That is the point, where you do have a leak. You are assigning a new value to your ivar `_searchKeyword', dismissing the pointer to the old keyword, which is still retained. So before assigning the new one, release the old one also.
Example:
[_searchKeyword release];
_searchKeyword = [keyword copy];
If you copy it, this is good, but if you only retain, it would be even better to do it like that (in case both reference the same object):
[keyword retain];
[_searchKeyword release];
_searchKeyword = keyword;

When there are two objects that are pointers to the same thing, it doesn't matter which one you call release on. The thing pointed at is where the reference count gets decremented.
Given you've released it in one place, and the analyzer isn't complaining, you don't have a problem.

Related

Releasing synthesized properties in objective C

I'm a little confused about synthesized properties. I have an array that I want to be accessible from other classes so this is my code:
MyClass.h
#interface MyClass : CCLayer {
NSMutableArray *myArray;
}
#property (nonatomic, retain) NSMutableArray *myArray;
MyClass.m
#synthesize myArray;
-(id)init
{
myArray = [[NSMutableArray alloc] init];
}
-(void)dealloc
{
[myArray release];
myArray = nil;
}
I am a little confused now..is myArray the same as self.myArray? Do I have to release self.myArray as well? Thanks.
You declared your property as retain, it means that it will be retained automatically if you will set is using self.myArray. So, you can simply create autoreleased array in your init method and set it as
myArray = [NSMutableArray array];
self.myArray = myArray;
in this case you are not have to release it in the dealloc method or anything else. And as dasblinkenlight said you have to use #synthesize if you want to be sure that self.myArray is linked with your myArray instance.
Assuming that your #synthesize directive looks like this
#synthesize myArray;
you do not need to do anything in addition to what you are already doing: your property stores its value in the instance variable of the same name.
EDITED : Removed the alternative that suggests setting self.myArray in the dealloc method.
Yes you do, the best method is to set the property nil and release your variable.
-(void)dealloc{
self.myArray = nil;
[myArray release];
[super dealloc];
}
The code you provided is not really correct.
No, accessing a property and accessing the field itself are not the same.
My guess is that you are looking at old obj C examples where it was necessary to create the field with the property.
You also have no #synthesize directive in your code.
In current obj C code there is no need to declare a field to back the property, the field and the getter and setter will be autosynthesized (generated by the compiler) for you.
The default field generation is the name of your property with an underscore in front of it.
When you access the field directly via _myArray you will bypass any retain or release code that is contained in the generated getter/setter and have to manually manage memory in a non ARC project.
So to sum up, you dont need your field definition, and you dont need a synthesize directive.
You access your field directly with _myArray, or the property via self.myArray
They are not the same thing, one goes through generated code which obeys your property definition as to retain, assign, copy and accessing the field directly bypasses these semantics altogether.
If you define your property as retain you will need to release it in dealloc
You can use either
self.myArray = nil;
which will handle the release or
[_myArray release];
_myArray = nil;
Although someone in a previous post said setting the property to nil in dealloc might cause a problem Ive never seen it actually happen in my apps, ymmv
To answer your questions:
I am a little confused now..is myArray the same as self.myArray?
Yes, but no. Both point to the same object, the same area in memory. If you read myArray or self.myArray, they're identical in behavior minus the message send overhead for self.myArray.
However if you assign to myArray, the object will not be retained. It will only be retained if you assign to self.myArray.
Do I have to release self.myArray as well?
No.
You can also choose to either release or set the property to nil. As long as the property is #synthesize'd both examples do the same thing:
-(void) dealloc
{
[super dealloc];
[myArray release];
}
-(void) dealloc
{
[super dealloc];
self.myArray = nil;
}
See here for a discussion of the pros/cons to each approach.
From the question I think you're the developer who should really be using ARC. You'll have less to learn and fewer technical problems down the road. I can't understate how important using ARC is in these days, specifically if you don't have much ObjC experience. Read this how to enable ARC for cocos2d or just use Kobold2D to be able to work with an ARC-enabled cocos2d out of the box.

More about property releasing

Maybe someone could explain the difference between property:
in .h file
#property(nonatomic,retain) NSString *someString;
#property(nonatomic,retain) NSString *someString2;
in .m file
#synthesize someString = _someString;
or
#synthesize someString2;
what is the difference for _someString and self.someString2 using in controller?
and in dealloc how i should release these property's
[_someString release];
AND
[self.someString2 release];
OR
_someString = nil;
_someString2 = nil;
synthesize someString = _someString;
This says synthesize the property someString but for direct access, use _somestring.
synthesize someString2;
This says synthesize the property someString2 but for direct access, use someString2.
Think of it as if the compiler is generating the iVars for you but in the first case the iVar is called _someString and the second is called someString2
This is a common usage (I recently moved to it) so that when you are dealing with the object directly (such as initialisers or in dealloc, where you should't use self) you can see instantly that when you write _someString = #"aString"; you are not going through the property methods that would apply the memory management types (such as retain, or copy). It used to be common that people would assign values directly, and then wonder why they weren't being retained.
[_someString release];
[_someString2 release];
Is sending the release method directly to the object.
self.someString = nil;
self.someString2 = nil;
Sends release through the property. In this case, There is no difference. There would be a difference if you were allocating objects: for example:
_someString = someOtherString;
Is a leak (except under ARC, which I will come to later), because you are just putting in a new object to the store, without releasing the current object.
self.someString = someOtherString;
does not leak anything, because the sythesized setter will release the current object before setting (and retaining) the new object.
I said I'd come to ARC. In which case you can't call release anyway, so the questions don't arise, but _someString = someOtherString is not a leak, because the compiler will deal with releasing the current object for you.
After:
property(nonatomic,retain) NSString *someString;
property(nonatomic,retain) NSString *someString2;
and:
#synthesize someString = _someString;
#synthesize someString2;
someString is a property backed by the instance variable _someString. Memory retention and release is managed by Obj-C.
Assignments to someString should use the form self.someString within the class, and must use <reference>.someString outside of it. Except within an initializer there should never be any assignments to a plain _someString.
Reading the value can use simply _someString within the class, but self.someString is also valid, and must use <reference>.someString outside of it.
Releasing the value must use the form self.someString = nil within the class, and <reference>.someString = nil outside of it.
someString2 is similar except it is backed by an automatically named instance variable, which happens to be called someString2.
#synthesize someString = _someString; Means you're making a property with a different name then the member variable it's associated with. This is fine. Typically they are same name. Here's an example when that isn't the case. So someString would be your property and _someString is your member variable.
As for [_someString release]; and [self.someString2 release]; what you're seeing is release being called on the member variable of your class(Which is _someString). [self.someString2 release] calls release on whatever the property returns. Keep in mind that properties can do more then just simply get and set. They are methods just like any other you might right.
Also, don't do [self.someString2 release]; Instead do self.someString2 = nil; That will release it on your behalf. That way it nils out the string. That will protect you from accessing bad memory incase the string is actually deallocated.
_someString = nil won't release your property.
In this case _someString and self._someString point to the exact same object, so you can release using either.
[_someString release];
AND
[self.someString2 release];
releases twice, that's wrong. Use
_someString = nil;
_someString2 = nil;
simply sets your ivars to nil, it doesn't release them, so that's again wrong.
Correct: either
self.someString = nil;
self.someString2 = nil;
or
[_someString release];
[_someString2 release];
I'd recommend the first one (dot-notation), as it does the right thing (you don't know what kind of code does a compiler generate when synthesizing your accessors...)

Acceptable ways to release a property

Assume there is a class with the following interface:
#import <Foundation/Foundation.h>
#interface MyClass : NSObject {
}
#property (nonatomic, retain) NSDate* myDate;
-(void)foo;
#end
and the following implementation:
#import "MyClass.h"
#implementation MyClass
#synthesize myDate = _myDate;
- (void)dealloc
{
[_myDate release];
[super dealloc];
}
-(void)foo
{
NSDate* temp = [[NSDate alloc] init];
self.myDate = temp;
[temp release];
}
#end
1) In the function foo will releasing like this ensure that the retain count of the objects is properly maintained (i.e. no memory is leaked and no unnecessary releases are performed).
NSDate* temp = [[NSDate alloc] init];
self.myDate = temp;
[temp release];
2) Same question as in 1) except applied to the following technique:
self.myDate = [[NSDate alloc] init];
[self.myDate release]
3) Same question as in 1) except applied to the following technique:
self.myDate = [[NSDate alloc] init] autorelease];
4) Same question as 1) but applied to the following technique:
self.myDate = [[NSDate alloc] init];
[_myDate release]
5) Same question as 1) but applied to the following technique:
[_myDate release];
_myDate = [[NSDate alloc] init];
1) Just fine.
2) Possibly unsafe, and will trigger warnings in the latest LLVM static analyzer. This is because the object returned by the getter method may not be the same one you passed to the setter. (The setter may have made a copy, for example, or may have failed validation and set a nil instead.) This would mean you were leaking the original object and over-releasing the one the getter gave back to you.
3) Just fine; similar to 1 but the release will come when the current autorelease pool is drained instead of immediately.
4) Possibly unsafe, but will not trigger warnings that I've seen. The issue is similar to the one described in 2; the object in the ivar may not be the one you passed to the setter.
5) Safe, but will not use the setter method or notify any observers of the property.
In the case where the property is a retain type, and both the getter and setter are just the synthesized versions, all of the above examples will work. However, they don't all represent best practice, and may trigger analysis warnings. The goal should be that the -foo method works correctly regardless of how myDate is managing its memory. Some of your examples above don't do that.
If, for example, you decided to change the property to copy later, you should not be required to change any other code to make it work correctly. In cases 2 and 4, you would be required to change additional code because the foo method is assuming that the setter will always succeed and always set the original object.
5) is a bug - it leaks the old instance as it doesn't get released but just reassigned.
1) is clean and the best way to go.
4) is ok but puts some burden on the memory system - the object might live longer than needed.
2) technically ok, but you shouldn't directly retain/release the property - that's what the syntactic sugar is for!
3) technically ok, but also bypasses the property and relies on implementation details.
2) and 3) are discouraged and ask for trouble in the future when some part of code changes.
Edit: New code doesn't leak in 5). It has the same downsides, though.
There's a reason why we got support for properties, and it does a great and consistent use. You should only consider bypassing them if your time profile gives very clear hints that this is a bottle neck (unlikely).
First, if you want to avoid the alloc, release, autorelease etc... you can call a date factory method which doesn't start with alloc.
For example:
self.myDate = [NSDate date];
The date class factory method does an autorelease according to the convention rules. Then the property retains it.
Alloc will give it a retain count of 1, then assigning the property will retain it. Since your class is now retaining it from the property, you can release it to counter act the alloc.
Ditto but that's a wierd round about way to do it.
3 is equivalent to the code I had above ([NSDate date]);
In this case, the property will retain it (after alloc incremented the retain count), then you're going under the covers to decrement it. Works but I wouldn't recommend doing that since you're synthesized (retain) property will do that for you.
the pattern of release and renew is merely a semantic. You get a retain count for each of the following.
myObject = [Object alloc]
objectCopy = [myObject copy]
myNewObject = [Object newObjectWithSomeProperties:#"Properties"] // Keyword here being new
// And of course
[myObject retain]
a property with the modifier (retain) or (copy) will have retain count on it.
the backing store _myDate is merely where the object is actually stored.
when you get a retain count you need to release.
Either immediately with the [myObject release] message or let the pool release it with [myObject autorelease]
Whatever the case, Any retain you are given (implicit or explicit) will need to be released. Otherewise the garbage collector will not collect your object and you will have a memory leak.
the most common usage in
Object myObject = [[[Object alloc] init] autorelease]; // Use this when you dont plan to keep the object.
Object myObject = [[Object alloc] init];
self.myProperty = [myObject autorelease]; // Exactally the same as the Previous. With autorelease
// Defined on the assignment line.
self.myProperty = [[[Object alloc] init] autorelease]; // Same as the last two. On one line.
I will demonstrate other possibilities
// Uncommon. Not incorrect. But Bad practice
myObject = [[Object alloc] init];
self.myProperty = myObject;
// Options
[_myProperty release] // Bad practice to release the instance variable
[self.myProperty release] // Better practice to Release the Property;
// releasing the property or the instance variable may not work either.
// If your property is using the (copy) modifier. The property is copied rather then retained.
// You are still given a retain count.
// But calling release on a copy will not release the original
[myObject release]; // Best Practice. Good when Threading may run the autorelease pool
[myObject autorelease]; // As good as the previous.
// But may leave your object in memory during long operations
Essentially, your object given a retain will be the same object in the Property the Variable and the Instance Variable. Releasing on any of them will release it.
However. Best practice says that if you retain an object. Best to call release on the same variable of that object. Even if Autorelease and retain is called on the other side.
// Other items that give you a retain count.
Core Media or Core Anything Functions that have Create Or Copy in the name.

Use autorelease when setting a retain property using dot syntax?

I see in some sample code that autorelease is used. I am not familiar with the instances when this is required. For example, if I create an annotation object
Header file
#interface someViewController: UIViewController
{
Annotation *annotation;
}
#property (nonatomic, retain) Annotation *annotation;
#end
Implementation file
#implementation someViewController
#synthesize annotation
#end
Question: Is it the correct approach if I initialize my annotation object in the implementation file like this?
self.annotation = [[Annotation alloc] initWithCoordinate:location];
Do I need to set autorelease for this? Or can I just do it the normal way and add the release in the dealloc method?
this is correct:
self.annotation = [[[Annotation alloc] initWithCoordinate:location] autorelease];
because annotation property is declared as a retain property, so assigning to it will increment its retain count.
you will also need, all the same, to release self.annotation in -dealloc.
in short:
init will set retain count to 1;
assigning to self.annotation, will set it to 2;
autorelease will set it back to 1 when the main loop is executed again;
release in dealloc will set the retain count to 0, so that the object will be deallocated);
the best way to think of autorelease is the following, in my opinion: autorelease will "schedule" an "automatic" release for your object at some (near) point in future (typically when the control flow goes back to the main loop, but details are hidden in the hands of Apple).
autorelease is mostly useful in conjunction with init, specifically in the following cases:
when you init a local variable, so that you don't have to release it explicitly before it goes out of scope (the main loop will do that for you);
when you return a pointer to an object you have just created without keeping ownership of it (typical case of the create/make* kind of selectors, the receiver is required to retain it to get ownership);
with properties that retain, when you assign to them an object that they should own uniquely;
with data structures that increment the retain count (NSMutableArray, NSMutableDictionary, etc): you should generally autorelease a newly inited object when you add it to such data structure.
apart from case 2, it is evident that the use of autorelease is meant to improve readability of the code and reduce the potential for errors (meaning that in all of the other cases, you could simply release explicitly your object after the assignment or at the end of the scope).
when using properties, you have always to check whether they are of the retain or assign/copy case; in the first case, assigning a newly inited object to a property generally requires autorelease.
Anyway, I would suggest at least skimming one of the many tutorial on memory management for iOS.
Autorelease is telling the object to release itself before leaving the scope.
Sometimes when you code, you'll encounter something like this
- (void)doSomething
{
if(true)
{
NSString *foo = [[NSString alloc] initWithString:#"foo"];
//Some execution here
[foo release];
}
}
- (void)doSomething
{
if(true)
{
//By doing this is telling to to release foo object before getting out of the scope
//which is similar with above practice
NSString *foo = [[[NSString alloc] initWithString:#"foo"] autorelease];
//Or you can do it this way
NSString *foo = [[NSString alloc] initWithString:#"foo"];
[foo autorelease];
//Some execution carry on, it'll release foo before entering next scope
}
//This is out of the scope
}
Of course, releasing an object doesn't mean deallocating the object.
Sometimes you retain the object so you can still use it outside of its scope.
Judging from your question, if your the object is located within your header file/interface.
You should release it in dealloc method. CMIIW.

If my property has no setter (readonly), is it true that UIKit retains the value if it's not NSNumber or NSValue?

I want to figure out in which cases I need to care about memory management when it comes to properties. I wrote down something from a site I don't remember anymore, where they said that if a property has any value other than NSNumber or NSValue, and if it has no setter, then UIKit would autorelease the old value and retain the new one. Although I dont get it why UIKit would set anything if there is no setter (directly to the value, I guess).
If the property is declared as:
#property(retain) NSString *prop;
It will release the old value when you assign a new one.
However, make sure you release it on your dealloc method as well:
- (void)dealloc {
[prop release];
[super dealloc];
}
You should (re)read the Memory Management Guide for Cocoa. The memory management rules for properties are the same as for all other objects.