Oracle: How can I find tablespace fragmentation? - sql

I've a JOIN beween two tables. It's really really slow and I can't find why.
The query takes hours in a PRODUCTION environment on a very big Client.
Can you ask me what you need to understand why it doesn't work well?
I can add indexes, partition the table, etc. It's Oracle 10g.
I expect a few thousand record. Because of the following condition:
f.eif_campo1 != c.fornitura AND and f.field29 = 'New'
Infact it should be always verified for all 18 million records
SELECT c.id_messaggio
,f.campo1
,c.f
FROM
flows c,
tab f
WHERE
f.field198 = c.id_messaggio
AND f.extra_id = c.extra_id
and f.field1 != c.ExampleF
and f.field29 = 'New'
and c.processtype in ('Example1')
and c.flag_ann = 'N';
Selectivity for the following record expressed as number of distinct values:
COUNT (DISTINCT extra_id) =>17*10^6,
COUNT (DISTINCT (extra_id || field20)) =>17*10^6,
COUNT (DISTINCT field198) =>36*10^6,
COUNT (DISTINCT (field19 || field20)) =>45*10^6,
COUNT (DISTINCT (field1)) =>18*10^6,
COUNT (DISTINCT (field20)) =>47
This is the execution plan [See large image][1]
![enter image description here][2]
Extra details:
I have relaxed one contition to see how many records are taken. 300 thousand.
![enter image description here][7]
--03:57 mins with parallel execution /*+ parallel(c 8) parallel(f 24) */
--395.358 rows
SELECT count(1)
FROM
flows c,
flet f
WHERE
f.field19 = c.id_messaggio
AND f.extra_id = c.extra_id
and f.field20 = 'ExampleF'
and c.process_type in ('ExampleP')
and c.flag_ann = 'N';

Your explain plan shows the following.
The database uses an index to retrieve rows from ENI_FLUSSI_HUB where
flh_tipo_processo_cod in ('VT','VOLTURA_ENI','CC')
It then winnows the rows
where flh_flag_ann = 'N'
This produces a result set which is used to access
rows from ETL_ELAB_INTERF_FLAT on the basis of f.idde_identif_dati_ext_id =
c.idde_identif_dati_ext_id
Finally those rows are filtered on the basis of the
remaining parts of the WHERE clause.
Now, the starting point is a good one if flh_tipo_processo_cod is a selective
column: that is, if it contains hundreds of different values, or if the values in
your list are relatively rare. It might even be a good path of the flag column
identifies relatively few columns with a value of 'N'. So you need to understand
both the distribution of your data - how many distinct values you have - and its
skew - which values appear very often or hardly at all. The overall
performance suggests that the distribution and/or skew of the
flh_tipo_processo_cod and flh_flag_ann columns is not good.
So what can you do? One approach is to follow Ben's suggestion, and use full
table scans. If you have an Enterprise Edition licence and plenty of CPU capacity
you could try parallel query to improve things. That might still be too slow, or it might be too disruptive for other users.
An alternative approach would be to use better indexes. A composite index on
eni_flussi_hub(flh_tipo_processo_cod,flh_flag_ann,idde_identif_dati_ext_id,
flh_fornitura,flh_id_messaggio) would avoid the need to read that table. Whether
this would be a new index or a replacement for ENI_FLK_IDX3 depends on the other
activity against the table. You might be able to benefit from index compression.
All the columns in the query projection are referenced in the WHERE clause. So
you could also use a composite index on the other table to avoid table reads. Agsin you need to understand the distribution and skew of the data. But you should probably lead with the least selective columns. Something like etl_elab_interf_flat(etl_elab_interf_flat,eif_campo200,dde_identif_dati_ext_id,eif_campo1,eif_campo198). Probably this is a new index. It's unlikely you would want to replace ETL_EIF_FK_IDX4 with this (especially if that really is an index on a foreign key constraint)..
Of course these are just guesses on my part. Tuning is a science and to do it properly requires lots of data. Use the Wait Interface to investigate where the database is spending its time. Use the 10053 event to understand why the Optimizer makes the choices it does. But above all, don't implement partitioning unless you really know the ramifications.

The simple answer seems to be your explain plan. You're accessing both tables by index rowid. Whilst to select a single row you cannot - to my knowledge - get faster, in your case you're selecting a lot more than a single row.
This means that for every single row you, you're going into both tables one row at a time, which when you're looking a significant proportion of a table or index is not what you want to do.
My suggestion would be to force a full scan of one or both of your tables. Try to use the smaller as a driver first:
SELECT /*+ full(c) */ c.flh_id_messaggio
, f.eif_campo1
, c.f
FROM flows c,
JOIN flet f
ON f.field19 = c.flh_id_messaggio
AND f.extra_id = c.extra_id
AND f.field1 <> c.f
WHERE ...
But you may have to change /*+ full(c) */ to /*+ full(c) full(f) */.
Your indexes seem to be separate column indexes as well. For this, and if possible, I would have indexes on:
flows of id_messaggio, extra_id, f
and on flet of field19, extra_id, field1.
This will only really matter if you do not use as full scan. Or, if you have everything you're returning and selecting is in one index.

Related

Index for join query with where clause PostgreSQL

I have to optimize the following query with the help of indexes.
SELECT f.*
FROM first f
JOIN second s on f.attributex_id = s.id
WHERE f.attributex_id IS NOT NULL AND f.attributey_id IS NULL
ORDER BY s.month ASC LIMIT 100;
Further infos:
attributex_id is a foreign key pointing to second.id
attributey_id is a foreign key pointing to another table not used in the query
Changing the query is not an option
Most entries (98%) in first the following will be true f.attributex_id IS NOT NULL. Same for the second condition f.attributey_id IS NULL
I tried to add as index as follows.
CREATE INDEX index_for_first
ON first (attributex_id, attributey_id)
WHERE attributex_id IS NOT NULL AND (attributey_id IS NULL)
But the index is not used (checked via Explain Analyze) when executing the query. What kind of indexes would I need to optimize the query and what am I doing wrong with the above index?
Does an index on s.month make sense, too (month is unique)?
Based on the query text and the fact that nearly all records in first satisfy the where clause, what you're essentially trying to do is
identify the 100 second records with the lowest month value
output the contents of the related records in the first table.
To achieve that you can create indexes on
second.month
first.attributex_id
Caveats
Since this query must be optimized, it's safe to say there are many rows in both tables. Since there are only 12 months in the year, the output of the query is probably not deterministic (i.e., it may return a different set of rows each time it's run, even if there is no activity in either table between runs) since many records likely share the same value for month. Adding "tie breaker" column(s) to the index on second may help, though your order by only includes month, so no guarantees. Also, if second.month can have null values, you'll need to decide whether those null values should collate first or last among values.
Also, this particular query is not the only one being run against your data. These indexes will take up disk space and incrementally slow down writes to the tables. If you have a dozen queries that perform poorly, you might fall into a trap of creating a couple indexes to help each one individually and that's not a solution that scales well.
Finally, you stated that
changing the query is not an option
Does that mean you're not allowed to change the text of the query, or the output of the query?
I personally feel like re-writing the query to select from second and then join first makes the goal of the query more obvious. The fact that your initial instinct was to add indexes to first lends credence to this idea. If the query were written as follows, it would have been more obvious that the thing to do is facilitate efficient access to the tiny set of rows in second that you're interested in:
...
from second s
join first f ...
where ...
order by s.month asc limit 100;

What are the performance implications of Oracle IN Clause with no joins?

I have a query in this form that will on average take ~100 in clause elements, and at some rare times > 1000 elements. If greater than 1000 elements, we will chunk the in clause down to 1000 (an Oracle maximum).
The SQL is in the form of
SELECT * FROM tab WHERE PrimaryKeyID IN (1,2,3,4,5,...)
The tables I am selecting from are huge and will contain millions more rows than what is in my in clause. My concern is that the optimizer may elect to do a table scan (our database does not have up to date statistics - yeah - I know ...)
Is there a hint I can pass to force the use of the primary key - WITHOUT knowing the index name of the primary Key, perhaps something like ... /*+ DO_NOT_TABLE_SCAN */?
Are there any creative approaches to pulling back the data such that
We perform the least number of round-trips
We we read the least number of blocks (at the logical IO level?)
Will this be faster ..
SELECT * FROM tab WHERE PrimaryKeyID = 1
UNION
SELECT * FROM tab WHERE PrimaryKeyID = 2
UNION
SELECT * FROM tab WHERE PrimaryKeyID = 2
UNION ....
If the statistics on your table are accurate, it should be very unlikely that the optimizer would choose to do a table scan rather than using the primary key index when you only have 1000 hard-coded elements in the WHERE clause. The best approach would be to gather (or set) accurate statistics on your objects since that should cause good things to happen automatically rather than trying to do a lot of gymnastics in order to work around incorrect statistics.
If we assume that the statistics are inaccurate to the degree that the optimizer would be lead to believe that a table scan would be more efficient than using the primary key index, you could potentially add in a DYNAMIC_SAMPLING hint that would force the optimizer to gather more accurate statistics before optimizing the statement or a CARDINALITY hint to override the optimizer's default cardinality estimate. Neither of those would require knowing anything about the available indexes, it would just require knowing the table alias (or name if there is no alias). DYNAMIC_SAMPLING would be the safer, more robust approach but it would add time to the parsing step.
If you are building up a SQL statement with a variable number of hard-coded parameters in an IN clause, you're likely going to be creating performance problems for yourself by flooding your shared pool with non-sharable SQL and forcing the database to spend a lot of time hard parsing each variant separately. It would be much more efficient if you created a single sharable SQL statement that could be parsed once. Depending on where your IN clause values are coming from, that might look something like
SELECT *
FROM table_name
WHERE primary_key IN (SELECT primary_key
FROM global_temporary_table);
or
SELECT *
FROM table_name
WHERE primary_key IN (SELECT primary_key
FROM TABLE( nested_table ));
or
SELECT *
FROM table_name
WHERE primary_key IN (SELECT primary_key
FROM some_other_source);
If you got yourself down to a single sharable SQL statement, then in addition to avoiding the cost of constantly re-parsing the statement, you'd have a number of options for forcing a particular plan that don't involve modifying the SQL statement. Different versions of Oracle have different options for plan stability-- there are stored outlines, SQL plan management, and SQL profiles among other technologies depending on your release. You can use these to force particular plans for particular SQL statements. If you keep generating new SQL statements that have to be re-parsed, however, it becomes very difficult to use these technologies.

Fast way to discover the row count of a table in PostgreSQL

I need to know the number of rows in a table to calculate a percentage. If the total count is greater than some predefined constant, I will use the constant value. Otherwise, I will use the actual number of rows.
I can use SELECT count(*) FROM table. But if my constant value is 500,000 and I have 5,000,000,000 rows in my table, counting all rows will waste a lot of time.
Is it possible to stop counting as soon as my constant value is surpassed?
I need the exact number of rows only as long as it's below the given limit. Otherwise, if the count is above the limit, I use the limit value instead and want the answer as fast as possible.
Something like this:
SELECT text,count(*), percentual_calculus()
FROM token
GROUP BY text
ORDER BY count DESC;
Counting rows in big tables is known to be slow in PostgreSQL. The MVCC model requires a full count of live rows for a precise number. There are workarounds to speed this up dramatically if the count does not have to be exact like it seems to be in your case.
(Remember that even an "exact" count is potentially dead on arrival under concurrent write load.)
Exact count
Slow for big tables.
With concurrent write operations, it may be outdated the moment you get it.
SELECT count(*) AS exact_count FROM myschema.mytable;
Estimate
Extremely fast:
SELECT reltuples AS estimate FROM pg_class where relname = 'mytable';
Typically, the estimate is very close. How close, depends on whether ANALYZE or VACUUM are run enough - where "enough" is defined by the level of write activity to your table.
Safer estimate
The above ignores the possibility of multiple tables with the same name in one database - in different schemas. To account for that:
SELECT c.reltuples::bigint AS estimate
FROM pg_class c
JOIN pg_namespace n ON n.oid = c.relnamespace
WHERE c.relname = 'mytable'
AND n.nspname = 'myschema';
The cast to bigint formats the real number nicely, especially for big counts.
Better estimate
SELECT reltuples::bigint AS estimate
FROM pg_class
WHERE oid = 'myschema.mytable'::regclass;
Faster, simpler, safer, more elegant. See the manual on Object Identifier Types.
Replace 'myschema.mytable'::regclass with to_regclass('myschema.mytable') in Postgres 9.4+ to get nothing instead of an exception for invalid table names. See:
How to check if a table exists in a given schema
Better estimate yet (for very little added cost)
This does not work for partitioned tables because relpages is always -1 for the parent table (while reltuples contains an actual estimate covering all partitions) - tested in Postgres 14.
You have to add up estimates for all partitions instead.
We can do what the Postgres planner does. Quoting the Row Estimation Examples in the manual:
These numbers are current as of the last VACUUM or ANALYZE on the
table. The planner then fetches the actual current number of pages in
the table (this is a cheap operation, not requiring a table scan). If
that is different from relpages then reltuples is scaled
accordingly to arrive at a current number-of-rows estimate.
Postgres uses estimate_rel_size defined in src/backend/utils/adt/plancat.c, which also covers the corner case of no data in pg_class because the relation was never vacuumed. We can do something similar in SQL:
Minimal form
SELECT (reltuples / relpages * (pg_relation_size(oid) / 8192))::bigint
FROM pg_class
WHERE oid = 'mytable'::regclass; -- your table here
Safe and explicit
SELECT (CASE WHEN c.reltuples < 0 THEN NULL -- never vacuumed
WHEN c.relpages = 0 THEN float8 '0' -- empty table
ELSE c.reltuples / c.relpages END
* (pg_catalog.pg_relation_size(c.oid)
/ pg_catalog.current_setting('block_size')::int)
)::bigint
FROM pg_catalog.pg_class c
WHERE c.oid = 'myschema.mytable'::regclass; -- schema-qualified table here
Doesn't break with empty tables and tables that have never seen VACUUM or ANALYZE. The manual on pg_class:
If the table has never yet been vacuumed or analyzed, reltuples contains -1 indicating that the row count is unknown.
If this query returns NULL, run ANALYZE or VACUUM for the table and repeat. (Alternatively, you could estimate row width based on column types like Postgres does, but that's tedious and error-prone.)
If this query returns 0, the table seems to be empty. But I would ANALYZE to make sure. (And maybe check your autovacuum settings.)
Typically, block_size is 8192. current_setting('block_size')::int covers rare exceptions.
Table and schema qualifications make it immune to any search_path and scope.
Either way, the query consistently takes < 0.1 ms for me.
More Web resources:
The Postgres Wiki FAQ
The Postgres wiki pages for count estimates and count(*) performance
TABLESAMPLE SYSTEM (n) in Postgres 9.5+
SELECT 100 * count(*) AS estimate FROM mytable TABLESAMPLE SYSTEM (1);
Like #a_horse commented, the added clause for the SELECT command can be useful if statistics in pg_class are not current enough for some reason. For example:
No autovacuum running.
Immediately after a large INSERT / UPDATE / DELETE.
TEMPORARY tables (which are not covered by autovacuum).
This only looks at a random n % (1 in the example) selection of blocks and counts rows in it. A bigger sample increases the cost and reduces the error, your pick. Accuracy depends on more factors:
Distribution of row size. If a given block happens to hold wider than usual rows, the count is lower than usual etc.
Dead tuples or a FILLFACTOR occupy space per block. If unevenly distributed across the table, the estimate may be off.
General rounding errors.
Typically, the estimate from pg_class will be faster and more accurate.
Answer to actual question
First, I need to know the number of rows in that table, if the total
count is greater than some predefined constant,
And whether it ...
... is possible at the moment the count pass my constant value, it will
stop the counting (and not wait to finish the counting to inform the
row count is greater).
Yes. You can use a subquery with LIMIT:
SELECT count(*) FROM (SELECT 1 FROM token LIMIT 500000) t;
Postgres actually stops counting beyond the given limit, you get an exact and current count for up to n rows (500000 in the example), and n otherwise. Not nearly as fast as the estimate in pg_class, though.
I did this once in a postgres app by running:
EXPLAIN SELECT * FROM foo;
Then examining the output with a regex, or similar logic. For a simple SELECT *, the first line of output should look something like this:
Seq Scan on uids (cost=0.00..1.21 rows=8 width=75)
You can use the rows=(\d+) value as a rough estimate of the number of rows that would be returned, then only do the actual SELECT COUNT(*) if the estimate is, say, less than 1.5x your threshold (or whatever number you deem makes sense for your application).
Depending on the complexity of your query, this number may become less and less accurate. In fact, in my application, as we added joins and complex conditions, it became so inaccurate it was completely worthless, even to know how within a power of 100 how many rows we'd have returned, so we had to abandon that strategy.
But if your query is simple enough that Pg can predict within some reasonable margin of error how many rows it will return, it may work for you.
Reference taken from this Blog.
You can use below to query to find row count.
Using pg_class:
SELECT reltuples::bigint AS EstimatedCount
FROM pg_class
WHERE oid = 'public.TableName'::regclass;
Using pg_stat_user_tables:
SELECT
schemaname
,relname
,n_live_tup AS EstimatedCount
FROM pg_stat_user_tables
ORDER BY n_live_tup DESC;
How wide is the text column?
With a GROUP BY there's not much you can do to avoid a data scan (at least an index scan).
I'd recommend:
If possible, changing the schema to remove duplication of text data. This way the count will happen on a narrow foreign key field in the 'many' table.
Alternatively, creating a generated column with a HASH of the text, then GROUP BY the hash column.
Again, this is to decrease the workload (scan through a narrow column index)
Edit:
Your original question did not quite match your edit. I'm not sure if you're aware that the COUNT, when used with a GROUP BY, will return the count of items per group and not the count of items in the entire table.
You can also just SELECT MAX(id) FROM <table_name>; change id to whatever the PK of the table is
In Oracle, you could use rownum to limit the number of rows returned. I am guessing similar construct exists in other SQLs as well. So, for the example you gave, you could limit the number of rows returned to 500001 and apply a count(*) then:
SELECT (case when cnt > 500000 then 500000 else cnt end) myCnt
FROM (SELECT count(*) cnt FROM table WHERE rownum<=500001)
For SQL Server (2005 or above) a quick and reliable method is:
SELECT SUM (row_count)
FROM sys.dm_db_partition_stats
WHERE object_id=OBJECT_ID('MyTableName')
AND (index_id=0 or index_id=1);
Details about sys.dm_db_partition_stats are explained in MSDN
The query adds rows from all parts of a (possibly) partitioned table.
index_id=0 is an unordered table (Heap) and index_id=1 is an ordered table (clustered index)
Even faster (but unreliable) methods are detailed here.

Oracle SQL query - unexpected query plan

I have a very simple query that's giving me unexpected results. Hints on where to troubleshoot it would be welcome.
Simplified, the query is:
SELECT Obs.obsDate,
Obs.obsValue,
ObsHead.name
FROM ml.Obs Obs
JOIN ml.ObsHead ObsHead ON ObsHead.hdId = Obs.hdId
WHERE obs.hdId IN (53, 54)
This gives me a query cost of: 963. However, if I change the query to:
SELECT Obs.obsDate,
Obs.obsValue,
ObsHead.name
FROM ml.Obs Obs
JOIN ml.ObsHead ObsHead ON ObsHead.hdId = Obs.hdId
WHERE ObsHead.name IN ('BP SYSTOLIC', 'BP DIASTOLIC')
Although it (should) return the same data, the estimated cost shoots up to 17688. Where is the problem here likely to lie? Thanks.
Edit: The query plan says that the index on ObsHead.Name is being used for a range scan, and the table access on ObsHead only costs 4. There's another index on Obs.hdId that's being used for a range scan costing 94: it's the Nested Loops join between the tables that jumps up to 17K.
As has already been stated, the plan's cost is not intended for comparing two different queries, only for comparing different paths for the same query.
This is only a guess, but in this case, the cardinality field of the plan might be more useful to you. If the index on OBSHEAD is not unique and the statistics were gathered using an estimate, then the optimizer may not know exactly how many rows to expect when querying that table. The cardinality will tell you whether this is true or not (ideally, you'll be seeing a cardinality of 2 for OBSHEAD).
Another suggestion is to check the statistics on OBS. It seems likely that is a table that grows frequently, in which case, January 28th is not recent enough to have gathered the statistics. Assuming monitoring is turned on for this table, the queries below can tell you if the statistics are stale and need to be refreshed.
select owner, table_name, last_analyzed, stale_stats
from all_tab_statistics
where owner = 'ML' and table_name = 'OBS';
select owner, index_name, last_analyzed, stale_stats
from all_ind_statistics
where owner = 'ML' and table_name = 'OBS';
There is probably an index on hdId (which there is if it's the primary key, which I suspect is the case) and not on name which means that the second query will have to do a full table scan.
Costs are only useful for comparing different plans for one query; they're not so useful for comparing different queries.
You need to look at the plans and compare them in terms of the actions they perform.
I suspect the actual performance of these queries will be similar - however it would be interesting to know whether the first query uses a hash join, which might help things if the percentage of records in obs that are matched is significant.
I find the costs supplied by the optimizer to be interesting but not particularly useful. The best way I've found to compare queries is to run them and see how they perform relative to one another.
Share and enjoy.

Unique index on two columns plus separate index on each one?

I don't know much about database optimization, but I'm trying to understand this case.
Say I have the following table:
cities
===========
state_id integer
name varchar(32)
slug varchar(32)
Now, say I want to perform queries like this:
SELECT * FROM cities WHERE state_id = 123 AND slug = 'some_city'
SELECT * FROM cities WHERE state_id = 123
If I want the "slug" for a city to be unique within its particular state, I'd add a unique index on state_id and slug.
Is that index enough? Or should I also add another on state_id so the second query is optimized? Or does the second query automatically use the unique index?
I'm working on PostgreSQL, but I feel this case is so simple that most DBMS work similarly.
Also, I know this surely doesn't make a difference on small tables, but my example is a simple one. Think of 200k+ rows tables.
Thanks!
A single unique index on (state_id, slug) should be sufficient. To be sure, of course, you'll need to run EXPLAIN and/or ANALYZE (perhaps with the help of something like http://explain.depesz.com/), but ultimately what indexes are appropriate depends very closely on what kind of queries you will be running. Remember, indexes make SELECTs faster and INSERTs, UPDATEs, and DELETEs slower, so you ideally want only as many indexes as are actually necessary.
Also, PostgreSQL has a smart query optimizer: it will use radically different search plans for queries on small tables and huge tables. If the table is small, it will just do a sequential scan and not even bother with any indexes, since the overhead of working with them is higher than just brute-force sifting through the table. This changes to a different plan once the table size passes a threshold, and may change again if the table gets larger again, or if you change your SELECT, or....
Summary: you can't trust the results of EXPLAIN and ANALYZE on datasets much smaller or different than your actual data. Make it work, then make it fast later (if you need to).
[EDIT: Misread the question... Hopefully my answer is more relevant now!]
In your case, I'd suggest 1 index on (state_id, slug). If you ever need to search just by slug, add an index on just that column. If you have those, then adding another index on state_id is unnecessary as the first index already covers it.
An index can be used whenever an initial segment of its columns are used in a WHERE clause. So e.g. an index on columns A, B and C will optimise queries containing WHERE clauses involving A, B and C, WHERE clauses with just A and B, or WHERE clauses with just A. Note that the order that columns appear in the index definition is very important -- this example index cannot be used for WHERE clauses involving just B and/or C.
(Of course it's up to the query optimiser whether or not a particular index actually gets used, but in your case with 200k rows, you can guarantee that a simple search by state_id or slug or both will use one of the indices.)
Any decent optimizer will see an index on three columns - say:
CREATE INDEX idx_1 ON SomeTable(Col1, Col2, Col3);
and will use that index for any of the following conditions:
WHERE Col1 = ...something...
WHERE Col1 = ...something... AND Col2 = ...otherthing...
WHERE Col3 = ....whatnot....
AND Col1 = ...something....
AND Col2 = ...otherthing...
That is, it will use the index if there are conditions applied to any contiguous leading subset of the columns of the index. Although I used equality, it can also apply to ranges (open - just greater than, for example) or closed (between two values).
To do optimization use EXPLAIN http://www.postgresql.org/docs/7.4/static/sql-explain.html and see for your self.
But optimization is not the most important reason to make those indexes; first it is a constraint inhibiting a database from not being logical.