Rails 3 cache questions - ruby-on-rails-3

Say I want to use the dalli store for caching (fragments of) views. Does this mean that doing something like this will also use memcache for possible DB caching?
Rails.cache.fetch("something") { smth }
Also, if I do something like:
Author.all
the Rails console will show me that it's querying the database, but if I run Author.all again, it will show me that the results are retrieved from cache. When do I want to explicitly use Rails.cache and when should I rely on ActiveRecord to do the caching?

Fetch and read operations get items from the
cache store which is currently configured,
for example from the file system if the cache
store is :file_store, or from the Memcached
server if the store is :mem_cache_store.
Therefore if you want to use Memcached for
fragment caching, you have to configure the
cache_store accordingly:
ActionController::Base.cache_store = :mem_cache_store, "cache-1.example.com"
It is recommendable to use fragment caching
if one has large, complex views involving many
queries which change rarely or slowly. Fragement
caching is a good trade-off between completely
static pages (fast, but fixed) and dynamic pages
(slow, but variable). If you need to cache a certain section of a
page instead of the entire page, fragment caching is the way
to go, as Ryan Bates said in his Railscast about fragment caching.
Page and action caching are even better, they are great
for speeding up the performance of a page, but problematic
if it contains user-specific content. In this case
it is possible to use dynamic page caching. Stackoverflow
uses a similar technique.
SQL Caching persists only for the duration of
a single action.

Related

Should all data be stored in Redis?

I am building a news site. Currently, I use MySQL as main data store and Redis to maintain list of articles for a user home page feed. When users click on an article on home page, I connect to MySQL to get the main content of the articles, comments, and related stuff.
Is it best practice if I store all article data in Redis? I mean instead of connecting to MySQL to get the whole content of an article, I store the main content of articles in Redis so that the performance can be improved?
This is opinion-based, so here's my opinion. Redis is primed to be used as a cache. You need to decide what to cache, and if caching is actually necessary. This depends on the scale of your app. If the articles change a lot and you do not have a huge user/visitor base, I do not think Redis is necessary at all. Remember you cannot search for stuff there. You can't go SELECT articles WHERE author='foo' in Redis.
If, on the other hand, you are seeing a massive increase in DB load due to to many users, you could pre-render the HTML for all the articles and put that into Redis. That would save the DB and the web server some load. But only if you already know which articles you want to display.
That depends on the role redis is supposed to take in your case.
If it serves as a cache, you could try to store more data in redis, where possible. As long as the development overhead is small and the process doesn't introduce new sources of errors.
In case you want redis to be a primary source for your data, what it doesn't sound like in your case, you could also decide to move everything away from MySQL. With low, and "rarely" changing data, it might be worth a shot. But remember to back up the database and sync to the HDD after changes.

Redis full text search : reverse indexing or sunspot?

I have 3,5 millions records (readonly) actually stored in a MySQL DB that I would want to pull out to Redis for performance reasons. Actually, I've managed to store things like this into Redis :
1 {"type":"Country","slug":"albania","name_fr":"Albanie","name_en":"Albania"}
2 {"type":"Country","slug":"armenia","name_fr":"Arménie","name_en":"Armenia"}
...
The key I use here is the legacy MySQL id, so with some Ruby glue, I can break as less things as possible in this existing app (and this is a serious concern here).
Now the problem is when I need to perform a search on the keyword "Armenia", inside the value part. Seems like there's only two ways out :
Either I multiplicate Redis index :
id => JSON values (as shown above)
slug => id (reverse indexing based on the slug, that could do the basic search trick)
finally, another huge index specifically for autocomplete, as shown in this post : http://oldblog.antirez.com/post/autocomplete-with-redis.html
Either I use sunspot or some full text search engine (unfortunatly, I actually use ThinkingSphinx which is too much tied to MySQL :-(
So, what would you do ? Do you think the MySQL to Redis move of a single table is even a good idea ? I'm afraid of the Memory footprint those gigantic Redis key/values could take on a 16GB RAM Server.
Any feedback on a similar Redis usage ?
Before I start with a real answer, I wanted to mention that I don't see a good reason for you to be using Redis here. Based on what types of use cases it sounds like you're trying to do, it sounds like something like elasticsearch would be more appropriate for you.
That said, if you just want to be able to search for a few different fields within your JSON, you've got two options:
Auxiliary index that points field_key -> list_of_ids (in your case, "Armenia" -> 1).
Use Lua on top of Redis with JSON encoding and decoding to get at what you want. This is way more flexible and space efficient, but will be slower as your table grows.
Again, I don't think either is appropriate for you because it doesn't sound like Redis is going to be a good choice for you, but if you must, those should work.
Here's my take on Redis.
Basically I think of it as an in-memory cache that can be configured to only store the least recently used data (LRU). Which is the role I made it to play in my use case, the logic of which may be applicable to helping you think about your use case.
I'm currently using Redis to cache results for a search engine based on some complex queries (slow), backed by data in another DB (similar to your case). So Redis serves as a cache storage for answering queries. All queries either get served the data in Redis or the DB if it's a cache-miss in Redis. So, note that Redis is not replacing the DB, but merely being an extension via cache in my case.
This fit my specific use case, because the addition of Redis was supposed to assist future scalability. The idea is that repeated access of recent data (in my case, if a user does a repeated query) can be served by Redis, and take some load off of the DB.
Basically my Redis schema ended up looking somewhat like the duplication of your index you outlined above. I used sets and sortedSets to create "batches / sets" of redis-keys, each of which pointed to specific query results stored under a particular redis-key. And in the DB, I still had the complete data set and an index.
If your data set fits on RAM, you could do the "table dump" into Redis, and get rid of the need for MySQL. I could see this working, as long as you plan for persistent Redis storage and plan for the possible growth of your data, if this "table" will grow in the future.
So depending on your actual use case and how you see Redis fitting into your stack, and the load your DB serves, don't rule out the possibility of having to do both of the options you outlined above (which happend in my case).
Hope this helps!
Redis does provide Full Text Search with RediSearch.
Redisearch implements a search engine on top of Redis. This also enables more advanced features, like exact phrase matching, auto suggestions and numeric filtering for text queries, that are not possible or efficient with traditional Redis search approaches.

How can we setup DB and ORM for the absence of Data Consistency requierement?

Imagine we have a web-site which sends write and read requests into some DB via Hibernate. I use Java, but it doesn't matter for this question.
Usually we want to read the fresh data from DB. But I want to introduce some delay between the written data becomes visible to reads just to increase the performance. I.e. I dont need to "publish" the rows inserted into DB immediately. Its OK for me to "publish" fresh data after some delay.
How can I achieve it?
As far as I understand this can be set up on several different tiers of my system.
I can cache some requests in front-end. Probably I should set up proxy server for this. But this will work only if all the parameters of the query match.
I can cache the read requests in Hibernate. OK, but can I specify or estimate the average time the read query will return stale data after some fresh insert occurred? In other words how can I control the delay time between fresh data becomes visible to the users?
Or may be I should use something like a memcached system instead of Hibernate cache?
Probably I can set something in DB. I dont know what should I do with DB. Probably I can ease the isolation level to burst the performance of my DB.
So, which way is the best one?
And the main question, of course: does the relaxation of requirements I introduce here may REALLY help to increase the performance of my system?
If I am reading your architecture correct you have client -> server -> database server
Answers to each point
This will put the burden on the client to implement the caching if you only use your own client I would go for this method. It will have the side effect of improving client performance possibly and put less load on the server and database server so they will scale better.
Now caching on the server will improve scalability of the database server and possibly performance in the client but will put a memory burden on the server. This would be my second option
Implement something in the database. At this point what are you gaining? the database server still has to do work to determine what rows to send back. And also you will get no scalability benefits.
So to sum up I would cache at the client first if you can if not cache at the server. Leave the DB out of the loop.
To answer your main question - caching is one of the most effective ways of increasing both performance and scalability of web applications which are constrained by database performance - your application may or may not fall into this category.
In general, I'd recommend setting up a load testing rig, and measure the various parts of your app to identify the bottleneck before starting to optimize.
The most effective cache is one outside your system - a CDN or the user's browser. Read up on browser caching, and see if there's anything you can cache locally. Browsers have caching built in as a standard feature - you control them via HTTP headers. These caches are very effective, because they stop requests even reaching your infrastructure; they are very efficient for static web assets like images, javascript files or stylesheets. I'd consider a proxy server to be in the same category. The major drawback is that it's hard to manage this cache - once you've said to the browser "cache this for 2 weeks", refreshing it is hard.
The next most effective caching layer is to cache (parts of) web pages on your application server. If you can do this, you avoid both the cost of rendering the page, and the cost of retrieving data from the database. Different web frameworks have different solutions for this.
Next, you can cache at the ORM level. Hibernate has a pretty robust implementation, and it provides a lot of granularity in your cache strategies. This article shows a sample implementation, including how to control the expiration time. You get a lot of control over caching here - you can specify the behaviour at the table level, so you can cache "lookup" data for days, and "transaction" data for seconds.
The database already implements a cache "under the hood" - it will load frequently used data into memory, for instance. In some applications, you can further improve the database performance by "de-normalizing" complex data - so the import routine might turn a complex data structure into a simple one. This does trade of data consistency and maintainability against performance.

Google App Engine automatically updating memcache

So here's the problem, I've created a database model. When I create the model, a = Model(args), and then perform a.put(), GAE seems to automatically update the memcache, because all the data seems up-to-date even without me hitting the database. Logging the number of elements in the cache works also shows the correct number of elements. But I'm not manually updating the cache. How do I prevent this? Cheers.
You can set policy functions:
Automatic caching is convenient for most applications but maybe your application is unusual and you want to turn off automatic caching for some or all entities. You can control the behavior of the caches by setting policy functions.
Memcache Policy
That's for NDB. You don't say what language/DB you are using but I'm sure it's all similar.

SQL Server 2005, Caches and all that jazz

Background to question: I'm looking to implement a caching system for my website. Currently we're exploring memcache as a means of doing this. However, I am looking to see if something similar exists for SQL Server. I understand that MySQL has query cache which although is not distributed works as a sort of 'stop gap' measure. Is MySQL query cache equivalent to the buffer cache in SQL Server?
So here are my questions:
Is there a way to know is currently stored in the buffer cache?
Follow up to this, is there a way to force certain tables or result sets into the cache
How much control do I have over what goes on in the buffer and procedure cache? I understand there used to be a DBCC PINTABLE command but that has since been discontinued.
Slightly off topic: Should the caching even exists on the database layer? Or it is more prudent to manage caches using Velocity/Memcache? Is so, why? It seems like cache invalidation is something of a pain when handling many objects with overlapping triggers.
Thanks!
SQL Server implements a buffer pool same way every database product under the sun does (more or less) since System R showed the way. The gory details are explain in Transaction Processing: Concepts and Techniques. I addition it has a caching framework used by the procedure cache, permission token cache and many many other caching classes. This framework is best described in Clock Hands - what are they for.
But this is not the kind of caching applications are usually interested in. The internal database cache is perfect for scale-up scenarios where a more powerfull back end database is able to respond faster to more queries by using these caches, but the modern application stack tends to scale out the web servers and the real problem is caching the results of query interogations in a cache used by the web farm. Ideally, this cache should be shared and distributed. Memcached and Velocity are examples of such application caching infrastructure. Memcache has a long history by now, its uses and shortcommings are understood, there is significant know-how around how to use it, deploy it, manage it and monitor it.
The biggest problem with caching in the application layer, and specially with distributed caching, is cache invalidation. How to detect the changes that occur in the back end data and mark cached entries invalid so that new requests don't use stale data.
The simplest (for some definition of simple...) alternative is proactive invalidation from the application. The code knows when it changes an entity in the database, and after the change occurs it takes the extra step to mark the cached entries invalid. This has several short commings:
Is difficult to know exactly which cached entries are to be invalidated. Dependencies can be quite complex, things are always more that just a simple table/entry, there are aggregate queries, joins, partitioned data etc etc.
Code discipline is required to ensure all paths that modify data also invalidate the cache.
Changes to the data that occur outside the application scope are not detected. In practice, there are always changes that occur outside the application scope: other applications using the same data, import/export and ETL jobs, manual intervention etc etc.
A more complicated alternative is a cache that is notified by the database itself when changes occur. Not many technologies are around to support this though, it cannot work without an active support from the database. SQL Server has Query Notifications for such scenarios, you can read more about it at The Mysterious Notification. Implementing QN based caching in a standalone application is fairly complicated (and often done badly) but it works fine when implemented correctly. Doing so in a shared scaled out cache like Memcached is quite a feats of strength, but is doable.
Nai,
Answers to your questions follow:
From Wiki - Always correct... ? :-). For a more Microsoft answer, here is their description on Buffer Cache.
Buffer management
SQL Server buffers pages in RAM to
minimize disc I/O. Any 8 KB page can
be buffered in-memory, and the set of
all pages currently buffered is called
the buffer cache. The amount of memory
available to SQL Server decides how
many pages will be cached in memory.
The buffer cache is managed by the
Buffer Manager. Either reading from or
writing to any page copies it to the
buffer cache. Subsequent reads or
writes are redirected to the in-memory
copy, rather than the on-disc version.
The page is updated on the disc by the
Buffer Manager only if the in-memory
cache has not been referenced for some
time. While writing pages back to
disc, asynchronous I/O is used whereby
the I/O operation is done in a
background thread so that other
operations do not have to wait for the
I/O operation to complete. Each page
is written along with its checksum
when it is written. When reading the
page back, its checksum is computed
again and matched with the stored
version to ensure the page has not
been damaged or tampered with in the
meantime.
For this answer, please refer to the above answer:
Either reading from or writing to any page copies it to the buffer cache. Subsequent reads or writes are redirected to the in-memory copy, rather than the on-disc version.
You can query the bpool_commit_target and bpool_committed columns in the sys.dm_os_sys_info catalog view to return the number of pages reserved as the memory target and the number of pages currently committed in the buffer cache, respectively.
I feel like Microsoft has had time to figure out caching for their product and should be trusted.
I hope this information was helpful,
Thanks!
Caching can take many different meaning for an ASP.Net application spread from the browser all the way to your hardware with the IIS, Application, Database thrown in the middle.
The caching you are talking about is Database level caching, this is mostly transparent to your application. This level of caching will include buffer pools, statement caches etc. Make sure your DB server has plenty of RAM. In theory a DB server should be able to load the entire DB store in memory. There is not much you can do at this level unless you pre-fetch some anticipated data when you start the application and ensure that it is in DB cache.
On the other hand is in-memory distributed caching system. Apart from memcache and velocity, you can look at some commercial solutions like NCache or Oracle Coherence. I have no experience in either of them to recommend. This level of caching promises scalability at a cheaper cost. It is expensive to scale the DB tier compared to this. You may have to consider aspects like network bandwidth though. This type of caching, specially with invalidation and expiry can be complicated
You can cache at Web Service tier using output caching at IIS level (in IIS 7) and ASP.Net level.
At the application level you can use ASP.Net cache. This is the one that you can control most and gives you good benefits.
Then there is caching going on at client web proxy tier that can be controlled by cache-control HTTP header.
Finally you have browser level caching, view state and cookies for small data.
And don't forget that hardware like SAN caches at physical disk access level too.
In summary caching can occur at many levels and it for you to analyse and implement the best solution for your scenario. You have find out stability and volatility of your data, expected load etc. I believe caching at ASP.Net level (specially for objects) gives you most flexibility and control.
Your specific technical questions about SQL Server's buffer cache are going down the wrong path when it comes to "implement a caching system for my website".
Sure, SQL Server is going to cache data so it can improve its performance (and it does so rather well), but the point of implementing a caching layer on your web front-ends is to avoid from having to talk to the database at all - because there is still overhead and resource contention even when your query is fulfilled entirely from SQL Server's cache.
You want to be looking into is: memcached, Velocity, ASP.NET Cache, P&P Caching Application Block, etc.