I'm trying to built C-- compiler using ANTLR 3.4.
Full set of the grammar listed here,
program : (vardeclaration | fundeclaration)* ;
vardeclaration : INT ID (OPENSQ NUM CLOSESQ)? SEMICOL ;
fundeclaration : typespecifier ID OPENP params CLOSEP compoundstmt ;
typespecifier : INT | VOID ;
params : VOID | paramlist ;
paramlist : param (COMMA param)* ;
param : INT ID (OPENSQ CLOSESQ)? ;
compoundstmt : OPENCUR vardeclaration* statement* CLOSECUR ;
statementlist : statement* ;
statement : expressionstmt | compoundstmt | selectionstmt | iterationstmt | returnstmt;
expressionstmt : (expression)? SEMICOL;
selectionstmt : IF OPENP expression CLOSEP statement (options {greedy=true;}: ELSE statement)?;
iterationstmt : WHILE OPENP expression CLOSEP statement;
returnstmt : RETURN (expression)? SEMICOL;
expression : (var EQUAL expression) | sampleexpression;
var : ID ( OPENSQ expression CLOSESQ )? ;
sampleexpression: addexpr ( ( LOREQ | LESS | GRTR | GOREQ | EQUAL | NTEQL) addexpr)?;
addexpr : mulexpr ( ( PLUS | MINUS ) mulexpr)*;
mulexpr : factor ( ( MULTI | DIV ) factor )*;
factor : ( OPENP expression CLOSEP ) | var | call | NUM;
call : ID OPENP arglist? CLOSEP;
arglist : expression ( COMMA expression)*;
Used lexer rules as following,
ELSE : 'else' ;
IF : 'if' ;
INT : 'int' ;
RETURN : 'return' ;
VOID : 'void' ;
WHILE : 'while' ;
PLUS : '+' ;
MINUS : '-' ;
MULTI : '*' ;
DIV : '/' ;
LESS : '<' ;
LOREQ : '<=' ;
GRTR : '>' ;
GOREQ : '>=' ;
EQUAL : '==' ;
NTEQL : '!=' ;
ASSIGN : '=' ;
SEMICOL : ';' ;
COMMA : ',' ;
OPENP : '(' ;
CLOSEP : ')' ;
OPENSQ : '[' ;
CLOSESQ : ']' ;
OPENCUR : '{' ;
CLOSECUR: '}' ;
SCOMMENT: '/*' ;
ECOMMENT: '*/' ;
ID : ('a'..'z' | 'A'..'Z')+/*(' ')*/ ;
NUM : ('0'..'9')+ ;
WS : (' ' | '\t' | '\n' | '\r')+ {$channel = HIDDEN;};
COMMENT: '/*' .* '*/' {$channel = HIDDEN;};
But I try to save this it give me the error,
error(211): /CMinusMinus/src/CMinusMinus/CMinusMinus.g:33:13: [fatal] rule expression has non-LL(*) decision due to recursive rule invocations reachable from alts 1,2. Resolve by left-factoring or using syntactic predicates or using backtrack=true option.
|---> expression : (var EQUAL expression) | sampleexpression;
1 error
How can I resolve this problem?
As already mentioned: your grammar rule expression is ambiguous: both alternatives in that rule start, or can be, a var.
You need to "help" your parser a bit. If the parse can see a var followed by an EQUAL, it should choose alternative 1, else alternative 2. This can be done by using a syntactic predicate (the (var EQUAL)=> part in the rule below).
expression
: (var EQUAL)=> var EQUAL expression
| sampleexpression
;
More about predicates in this Q&A: What is a 'semantic predicate' in ANTLR?
The problem is this:
expression : (var EQUAL expression) | sampleexpression;
where you either start with var or sampleexpression. But sampleexpression can be reduced to var as well by doing sampleexpression->addExpr->MultExpr->Factor->var
So there is no way to find a k-length predicate for the compiler.
You can as suggested by the error message set backtrack=true to see whether this solves your problem, but it might lead not to the AST - parsetrees you would expect and might also be slow on special input conditions.
You could also try to refactor your grammar to avoid such recursions.
Related
I have tried to write a grammar to recognize expressions like:
(A + MAX(B) ) / ( C - AVERAGE(A) )
IF( A > AVERAGE(A), 0, 1 )
X / (MAX(X)
Unfortunately antlr3 fails with these errors:
error(210): The following sets of rules are mutually left-recursive [unaryExpression, additiveExpression, primaryExpression, formula, multiplicativeExpression]
error(211): DerivedKeywords.g:110:13: [fatal] rule booleanTerm has non-LL(*) decision due to recursive rule invocations reachable from alts 1,2. Resolve by left-factoring or using syntactic predicates or using backtrack=true option.
error(206): DerivedKeywords.g:110:13: Alternative 1: after matching input such as decision cannot predict what comes next due to recursion overflow to additiveExpression from formula
I have spent some hours trying to fix these, it would be great if anyone could at least help me fix the first problem. Thanks
Code:
grammar DerivedKeywords;
options {
output=AST;
//backtrack=true;
}
WS : ( ' ' | '\t' | '\n' | '\r' )
{ skip(); }
;
//for numbers
DIGIT
: '0'..'9'
;
//for both integer and real number
NUMBER
: (DIGIT)+ ( '.' (DIGIT)+ )?( ('E'|'e')('+'|'-')?(DIGIT)+ )?
;
// Boolean operatos
AND : 'AND';
OR : 'OR';
NOT : 'NOT';
EQ : '=';
NEQ : '!=';
GT : '>';
LT : '<';
GTE : '>=';
LTE : '<=';
COMMA : ',';
// Token for Functions
IF : 'IF';
MAX : 'MAX';
MIN : 'MIN';
AVERAGE : 'AVERAGE';
VARIABLE : 'A'..'Z' ('A'..'Z' | '0'..'9')*
;
// OPERATORS
LPAREN : '(' ;
RPAREN : ')' ;
DIV : '/' ;
PLUS : '+' ;
MINUS : '-' ;
STAR : '*' ;
expression : formula;
formula
: functionExpression
| additiveExpression
| LPAREN! a=formula RPAREN! // First Problem
;
additiveExpression
: a=multiplicativeExpression ( (MINUS^ | PLUS^ ) b=multiplicativeExpression )*
;
multiplicativeExpression
: a=unaryExpression ( (STAR^ | DIV^ ) b=unaryExpression )*
;
unaryExpression
: MINUS^ u=unaryExpression
| primaryExpression
;
functionExpression
: f=functionOperator LPAREN e=formula RPAREN
| IF LPAREN b=booleanExpression COMMA p=formula COMMA s=formula RPAREN
;
functionOperator :
MAX | MIN | AVERAGE;
primaryExpression
: NUMBER
// Used for scientific numbers
| DIGIT
| VARIABLE
| formula
;
// Boolean stuff
booleanExpression
: orExpression;
orExpression : a=andExpression (OR^ b=andExpression )*
;
andExpression
: a=notExpression (AND^ b=notExpression )*
;
notExpression
: NOT^ t=booleanTerm
| booleanTerm
;
booleanOperator :
GT | LT | EQ | GTE | LTE | NEQ;
booleanTerm : a=formula op=booleanOperator b=formula
| LPAREN! booleanTerm RPAREN! // Second problem
;
error(210): The following sets of rules are mutually left-recursive [unaryExpression, additiveExpression, primaryExpression, formula, multiplicativeExpression]
- this means that if the parser enters unaryExpression rule, it has the possibility to match additiveExpression, primaryExpression, formula, multiplicativeExpression and unaryExpression again without ever consuming a single token from input - so it cannot decide whether to use those rules or not, because even if it uses the rules, the input will be the same.
You're probably trying to allow subexpressions in expressions by this sequence of rules - you need to make sure that path will consume the left parenthesis of the subexpression. Probably the formula alternative in primaryExpression should be changed to LPAREN formula RPAREN, and the rest of grammar be adjusted accordingly.
I'm trying to learn a bit ANTLR4 and define a grammar for some 4GL language.
This is what I've got:
compileUnit
:
typedeclaration EOF
;
typedeclaration
:
ID LPAREN DATATYPE INT RPAREN
;
DATATYPE
:
DATATYPE_ALPHANUMERIC
| DATATYPE_NUMERIC
;
DATATYPE_ALPHANUMERIC
:
'A'
;
DATATYPE_NUMERIC
:
'N'
;
fragment
DIGIT
:
[0-9]
;
fragment
LETTER
:
[a-zA-Z]
;
INT
:
DIGIT+
;
ID
:
LETTER
(
LETTER
| DIGIT
)*
;
LPAREN
:
'('
;
RPAREN
:
')'
;
WS
:
[ \t\f]+ -> skip
;
What I want to be able to parse:
TEST (A10)
what I get:
typedeclaration:1:6: mismatched input 'A10' expecting DATATYPE
I am however able to write:
TEST (A 10)
Why do I need to put a whitespace in here? The LPAREN DATATYPE in itself is working, so there is no need for a space inbetween. Also the INT RPAREN is working.
Why is a space needed between DATATYPE and INT? I'm a bit confused on that one.
I guess that it's matching ID because it's the "longest" match, but there must be some way to force to be lazier here, right?
You should ignore 'A' and 'N' chats at first position of ID. As #CoronA noticed ANTLR matches token as long as possible (length of ID 'A10' more than length of DATATYPE_ALPHANUMERIC 'A'). Also read this: Priority rules. Try to use the following grammar:
grammar expr;
compileUnit
: typedeclaration EOF
;
typedeclaration
: ID LPAREN datatype INT RPAREN
;
datatype
: DATATYPE_ALPHANUMERIC
| DATATYPE_NUMERIC
;
DATATYPE_ALPHANUMERIC
: 'A'
;
DATATYPE_NUMERIC
: 'N'
;
INT
: DIGIT+
;
ID
: [b-mo-zB-MO-Z] (LETTER | DIGIT)*
;
LPAREN
: '('
;
RPAREN
: ')'
;
WS
: [ \t\f]+ -> skip
;
fragment
DIGIT
: [0-9]
;
fragment
LETTER
: [a-zA-Z]
;
Also you can use the following grammar without id restriction. Data types will be recognized earlier than letters. it's not clear too:
grammar expr;
compileUnit
: typedeclaration EOF
;
typedeclaration
: id LPAREN datatype DIGIT+ RPAREN
;
id
: (datatype | LETTER) (datatype | LETTER | DIGIT)*
;
datatype
: DATATYPE_ALPHANUMERIC
| DATATYPE_NUMERIC
;
DATATYPE_ALPHANUMERIC: 'A';
DATATYPE_NUMERIC: 'N';
// List with another Data types.
LETTER: [a-zA-Z];
LPAREN
: '('
;
RPAREN
: ')'
;
WS
: [ \t\f]+ -> skip
;
DIGIT
: [0-9]
;
I’m currently trying to build a parser for the language Oberon using Antlr and Ecplise.
This is what I have got so far:
grammar oberon;
options
{
language = Java;
//backtrack = true;
output = AST;
}
#parser::header {package dhbw.Oberon;}
#lexer::header {package dhbw.Oberon; }
T_ARRAY : 'ARRAY' ;
T_BEGIN : 'BEGIN';
T_CASE : 'CASE' ;
T_CONST : 'CONST' ;
T_DO : 'DO' ;
T_ELSE : 'ELSE' ;
T_ELSIF : 'ELSIF' ;
T_END : 'END' ;
T_EXIT : 'EXIT' ;
T_IF : 'IF' ;
T_IMPORT : 'IMPORT' ;
T_LOOP : 'LOOP' ;
T_MODULE : 'MODULE' ;
T_NIL : 'NIL' ;
T_OF : 'OF' ;
T_POINTER : 'POINTER' ;
T_PROCEDURE : 'PROCEDURE' ;
T_RECORD : 'RECORD' ;
T_REPEAT : 'REPEAT' ;
T_RETURN : 'RETURN';
T_THEN : 'THEN' ;
T_TO : 'TO' ;
T_TYPE : 'TYPE' ;
T_UNTIL : 'UNTIL' ;
T_VAR : 'VAR' ;
T_WHILE : 'WHILE' ;
T_WITH : 'WITH' ;
module : T_MODULE ID SEMI importlist? declarationsequence?
(T_BEGIN statementsequence)? T_END ID PERIOD ;
importlist : T_IMPORT importitem (COMMA importitem)* SEMI ;
importitem : ID (ASSIGN ID)? ;
declarationsequence :
( T_CONST (constantdeclaration SEMI)*
| T_TYPE (typedeclaration SEMI)*
| T_VAR (variabledeclaration SEMI)*)
(proceduredeclaration SEMI | forwarddeclaration SEMI)*
;
constantdeclaration: identifierdef EQUAL expression ;
identifierdef: ID MULT? ;
expression: simpleexpression (relation simpleexpression)? ;
simpleexpression : (PLUS|MINUS)? term (addoperator term)* ;
term: factor (muloperator factor)* ;
factor: number
| stringliteral
| T_NIL
| set
| designator '(' explist? ')'
;
number: INT | HEX ; // TODO add real
stringliteral : '"' ( ~('\\'|'"') )* '"' ;
set: '{' elementlist? '}' ;
elementlist: element (COMMA element)* ;
element: expression (RANGESEP expression)? ;
designator: qualidentifier
('.' ID
| '[' explist ']'
| '(' qualidentifier ')'
| UPCHAR )+
;
explist: expression (COMMA expression)* ;
actualparameters: '(' explist? ')' ;
muloperator: MULT | DIV | MOD | ET ;
addoperator: PLUS | MINUS | OR ;
relation: EQUAL ; // TODO
typedeclaration: ID EQUAL type ;
type: qualidentifier
| arraytype
| recordtype
| pointertype
| proceduretype
;
qualidentifier: (ID '.')* ID ;
arraytype: T_ARRAY expression (',' expression) T_OF type;
recordtype: T_RECORD ('(' qualidentifier ')')? fieldlistsequence T_END ;
fieldlistsequence: fieldlist (SEMI fieldlist) ;
fieldlist: (identifierlist COLON type)? ;
identifierlist: identifierdef (COMMA identifierdef)* ;
pointertype: T_POINTER T_TO type ;
proceduretype: T_PROCEDURE formalparameters? ;
variabledeclaration: identifierlist COLON type ;
proceduredeclaration: procedureheading SEMI procedurebody ID ;
procedureheading: T_PROCEDURE MULT? identifierdef formalparameters? ;
formalparameters: '(' params? ')' (COLON qualidentifier)? ;
params: fpsection (SEMI fpsection)* ;
fpsection: T_VAR? idlist COLON formaltype ;
idlist: ID (COMMA ID)* ;
formaltype: (T_ARRAY T_OF)* (qualidentifier | proceduretype);
procedurebody: declarationsequence (T_BEGIN statementsequence)? T_END ;
forwarddeclaration: T_PROCEDURE UPCHAR? ID MULT? formalparameters? ;
statementsequence: statement (SEMI statement)* ;
statement : assignment
| procedurecall
| ifstatement
| casestatement
| whilestatement
| repeatstatement
| loopstatement
| withstatement
| T_EXIT
| T_RETURN expression?
;
assignment: designator ASSIGN expression ;
procedurecall: designator actualparameters? ;
ifstatement: T_IF expression T_THEN statementsequence
(T_ELSIF expression T_THEN statementsequence)*
(T_ELSE statementsequence)? T_END ;
casestatement: T_CASE expression T_OF caseitem ('|' caseitem)*
(T_ELSE statementsequence)? T_END ;
caseitem: caselabellist COLON statementsequence ;
caselabellist: caselabels (COMMA caselabels)* ;
caselabels: expression (RANGESEP expression)? ;
whilestatement: T_WHILE expression T_DO statementsequence T_END ;
repeatstatement: T_REPEAT statementsequence T_UNTIL expression ;
loopstatement: T_LOOP statementsequence T_END ;
withstatement: T_WITH qualidentifier COLON qualidentifier T_DO statementsequence T_END ;
ID : ('a'..'z'|'A'..'Z')('a'..'z'|'A'..'Z'|'_'|'0'..'9')* ;
fragment DIGIT : '0'..'9' ;
INT : ('-')?DIGIT+ ;
fragment HEXDIGIT : '0'..'9'|'A'..'F' ;
HEX : HEXDIGIT+ 'H' ;
ASSIGN : ':=' ;
COLON : ':' ;
COMMA : ',' ;
DIV : '/' ;
EQUAL : '=' ;
ET : '&' ;
MINUS : '-' ;
MOD : '%' ;
MULT : '*' ;
OR : '|' ;
PERIOD : '.' ;
PLUS : '+' ;
RANGESEP : '..' ;
SEMI : ';' ;
UPCHAR : '^' ;
WS : ( ' ' | '\t' | '\r' | '\n'){skip();};
My problem is when I check the grammar I get the following error and just can’t find an appropriate way to fix this:
rule statement has non-LL(*) decision
due to recursive rule invocations reachable from alts 1,2.
Resolve by left-factoring or using syntactic predicates
or using backtrack=true option.
|---> statement : assignment
Also I have the problem with declarationsequence and simpleexpression.
When I use options { … backtrack = true; … } it at least compiles, but obviously doesn’t work right anymore when I run a test-file, but I can’t find a way to resolve the left-recursion on my own (or maybe I’m just too blind at the moment because I’ve looked at this for far too long now). Any ideas how I could change the lines where the errors occurs to make it work?
EDIT
I could fix one of the three mistakes. statement works now. The problem was that assignment and procedurecall both started with designator.
statement : procedureassignmentcall
| ifstatement
| casestatement
| whilestatement
| repeatstatement
| loopstatement
| withstatement
| T_EXIT
| T_RETURN expression?
;
procedureassignmentcall : (designator ASSIGN)=> assignment | procedurecall;
assignment: designator ASSIGN expression ;
procedurecall: designator actualparameters? ;
If I have expressions like:
(name = Paul AND age = 16) OR country = china;
And I want to get:
QUERY
|
|-------------|
() |
| |
AND OR
| |
|-------| |
name age country
| | |
Paul 16 china
How can I print the () and the condition (AND/OR) before the fields name, age country?
My grammar file is something like this:
parse
: block EOF -> block
;
block
: (statement)* (Return ID ';')?
-> ^(QUERY statement*)
;
statement
: assignment ';'
-> assignment
;
assignment
: expression (condition expression)*
-> ^(condition expression*)
| '(' expression (condition expression)* ')' (condition expression)*
-> ^(Brackets ^(condition expression*))
;
condition
: AND
| OR
;
Brackets: '()' ;
OR : 'OR' ;
AND : 'AND' ;
..
But it only prints the first condition that appears in the expression ('AND' in this example), and I can't group what is between brackets, and what is not...
Your grammar looks odd to me, and there are errors in it: if the parser does not match "()", you can't use Brackets inside a rewrite rule. And why would you ever want to have the token "()" inside your AST?
Given your example input:
(name = Paul AND age = 16) OR country = china;
here's possible way to construct an AST:
grammar T;
options {
output=AST;
}
query
: expr ';' EOF -> expr
;
expr
: logical_expr
;
logical_expr
: equality_expr ( logical_op^ equality_expr )*
;
equality_expr
: atom ( equality_op^ atom )*
;
atom
: ID
| INT
| '(' expr ')' -> expr
;
equality_op
: '='
| 'IS' 'NOT'?
;
logical_op
: 'AND'
| 'OR'
;
ID : ('a'..'z' | 'A'..'Z')+;
INT : '0'..'9'+;
WS : (' ' | '\t' | '\r' | '\n')+ {skip();};
which would result in this:
Is there any way to specify a grammar which allows the following syntax:
f(x)(g, (1-(-2))*3, 1+2*3)[0]
which is transformed into (in pseudo-lisp to show order):
(index
((f x)
g
(* (- 1 -2) 3)
(+ (* 2 3) 1)
)
0
)
along with things like limited operator precedence etc.
The following grammar works with backtrack = true, but I'd like to avoid that:
grammar T;
options {
output=AST;
backtrack=true;
memoize=true;
}
tokens {
CALL;
INDEX;
LOOKUP;
}
prog: (expr '\n')* ;
expr : boolExpr;
boolExpr
: relExpr (boolop^ relExpr)?
;
relExpr
: addExpr (relop^ addExpr)?
| a=addExpr oa=relop b=addExpr ob=relop c=addExpr
-> ^(LAND ^($oa $a $b) ^($ob $b $c))
;
addExpr
: mulExpr (addop^ mulExpr)?
;
mulExpr
: atomExpr (mulop^ atomExpr)?
;
atomExpr
: INT
| ID
| OPAREN expr CPAREN -> expr
| call
;
call
: callable ( OPAREN (expr (COMMA expr)*)? CPAREN -> ^(CALL callable expr*)
| OBRACK expr CBRACK -> ^(INDEX callable expr)
| DOT ID -> ^(INDEX callable ID)
)
;
fragment
callable
: ID
| OPAREN expr CPAREN
;
fragment
boolop
: LAND | LOR
;
fragment
relop
: (EQ|GT|LT|GTE|LTE)
;
fragment
addop
: (PLUS|MINUS)
;
fragment
mulop
: (TIMES|DIVIDE)
;
EQ : '==' ;
GT : '>' ;
LT : '<' ;
GTE : '>=' ;
LTE : '<=' ;
LAND : '&&' ;
LOR : '||' ;
PLUS : '+' ;
MINUS : '-' ;
TIMES : '*' ;
DIVIDE : '/' ;
ID : ('a'..'z')+ ;
INT : '0'..'9' ;
OPAREN : '(' ;
CPAREN : ')' ;
OBRACK : '[' ;
CBRACK : ']' ;
DOT : '.' ;
COMMA : ',' ;
There are a couple of things wrong with your grammar:
1
Only lexer rules can be fragments, not parser rules. Some ANTLR targets simply ignore the fragment keyword in front of parser rules (like the Java target), but better just remove them from your grammar: if you decide to create a parser for a different target-language, you may run into problems because of it.
2
Without the backtrack=true, you cannot mix tree-rewrite operators (^ and !) and rewrite rules (->) because you need to create a single alternative inside relExpr instead of the two alternatives you now have (this is to eliminate an ambiguity).
In your case, you can't create the desired AST with just ^ (inside a single alternative), so you'll need to do it like this:
relExpr
: (a=addExpr -> $a) ( (oa=relOp b=addExpr -> ^($oa $a $b))
( ob=relOp c=addExpr -> ^(LAND ^($oa $a $b) ^($ob $b $c))
)?
)?
;
(yes, I know, it's not particularly pretty, but that can't be helped AFAIK)
Also, you can only put the LAND token in the rewrite rules if it is defined in the tokens { ... } block:
tokens {
// literal tokens
LAND='&&';
...
// imaginary tokens
CALL;
...
}
Otherwise you can only use tokens (and other parser rules) in rewrite rules if they really occur inside the parser rule itself.
3
You did not account for the unary minus in your grammar, implement it like this:
mulExpr
: unaryExpr ((TIMES | DIVIDE)^ unaryExpr)*
;
unaryExpr
: MINUS atomExpr -> ^(UNARY_MINUS atomExpr)
| atomExpr
;
Now, to create a grammar that does not need backtrack=true, remove the ID and '(' expr ')' from your atomExpr rule:
atomExpr
: INT
| call
;
and make everything passed callable optional inside your call rule:
call
: (callable -> callable) ( OPAREN params CPAREN -> ^(CALL $call params)
| OBRACK expr CBRACK -> ^(INDEX $call expr)
| DOT ID -> ^(INDEX $call ID)
)*
;
That way, ID and '(' expr ')' are already matched by call (and there's no ambiguity).
Taken all the remarks above into account, you could get the following grammar:
grammar T;
options {
output=AST;
}
tokens {
// literal tokens
EQ = '==' ;
GT = '>' ;
LT = '<' ;
GTE = '>=' ;
LTE = '<=' ;
LAND = '&&' ;
LOR = '||' ;
PLUS = '+' ;
MINUS = '-' ;
TIMES = '*' ;
DIVIDE = '/' ;
OPAREN = '(' ;
CPAREN = ')' ;
OBRACK = '[' ;
CBRACK = ']' ;
DOT = '.' ;
COMMA = ',' ;
// imaginary tokens
CALL;
INDEX;
LOOKUP;
UNARY_MINUS;
PARAMS;
}
prog
: expr EOF -> expr
;
expr
: boolExpr
;
boolExpr
: relExpr ((LAND | LOR)^ relExpr)?
;
relExpr
: (a=addExpr -> $a) ( (oa=relOp b=addExpr -> ^($oa $a $b))
( ob=relOp c=addExpr -> ^(LAND ^($oa $a $b) ^($ob $b $c))
)?
)?
;
addExpr
: mulExpr ((PLUS | MINUS)^ mulExpr)*
;
mulExpr
: unaryExpr ((TIMES | DIVIDE)^ unaryExpr)*
;
unaryExpr
: MINUS atomExpr -> ^(UNARY_MINUS atomExpr)
| atomExpr
;
atomExpr
: INT
| call
;
call
: (callable -> callable) ( OPAREN params CPAREN -> ^(CALL $call params)
| OBRACK expr CBRACK -> ^(INDEX $call expr)
| DOT ID -> ^(INDEX $call ID)
)*
;
callable
: ID
| OPAREN expr CPAREN -> expr
;
params
: (expr (COMMA expr)*)? -> ^(PARAMS expr*)
;
relOp
: EQ | GT | LT | GTE | LTE
;
ID : 'a'..'z'+ ;
INT : '0'..'9'+ ;
SPACE : (' ' | '\t') {skip();};
which would parse the input "a >= b < c" into the following AST:
and the input "f(x)(g, (1-(-2))*3, 1+2*3)[0]" as follows: