Related
I am currently building my first stuff on Smalltalk and I have hit an issue. I have to deal with a user-entered number, and I need to div it by 2 and still be an integer. If an user inputs 10, I will work with 5, if they input 11, I have to work with 6, but I will obviously get 5.5.
If I could get the mod of a number I could simply make sure mod = 0 else add 0.5 and it would do just as good, but I just can't find how to make a mod operation in SmallTalk, all my searches end up in unrelated stuff about actual social smalltalk, which is extremely frustrating.
So if you could tell me how to get the mod of a number it would be great, if you could tell me how to round up with a separate function, even better. Thanks for your help and time beforehand.
UPDATE: After some research, I tried to do it this way:
mod := par rem: 2.
mod = 0 ifFalse: [ par := par + 0.5 ].
where as "mod" is mod of the variable "par", and if it isn't 0, it should add up 0.5 to par.
My issue now is that trying to use par in a timesRepeat brings up a "BoxedFloat64 did not understand #timesRepeat" error. So I am still in the same issue, or just need a way to make a float into an integer.
There are a lot of ways. For example
Add 1 to entered number before div by 2 if entered number is odd
temp := enteredNumber.
temp odd ifTrue: [temp := temp + 1 ].
^temp / 2
Using ceiling method
^(enteredNumber / 2) ceiling
In Smalltalk, we have an operator for integer division (and even two operators):
11 / 2
would answer a Fraction, not a whole Integer
But:
11 // 2
would answer the quotient of division, rounded toward negative infinity
And the corresponding remainder will be:
11 \\ 2
The second operator quo: for quotient and rem: for remainder
The difference is only with negative receiver/operand: the later ones are truncating the quotient toward zero.
-11 // 4 = -3. "floored toward negative infinity"
-11 \\ 4 = 1.
(-11 quo: 4) = -2. "truncated toward zero"
(-11 rem: 4) = -3.
If you want to round the quotient upper (toward positive infinity), then you can write:
(anInteger + 1) // 2.
Or same without parenthesis if you are confident enough in binary operator precedence:
anInteger + 1 // 2.
So there was a puzzle:
This equation is incomplete: 1 2 3 4 5 6 7 8 9 = 100. One way to make
it accurate is by adding seven plus and minus signs, like so: 1 + 2 +
3 – 4 + 5 + 6 + 78 + 9 = 100.
How can you do it using only 3 plus or minus signs?
I'm quite new to Prolog, solved the puzzle, but i wonder how to optimize it
makeInt(S,F,FinInt):-
getInt(S,F,0,FinInt).
getInt(Start, Finish, Acc, FinInt):-
0 =< Finish - Start,
NewAcc is Acc*10 + Start,
NewStart is Start +1,
getInt(NewStart, Finish, NewAcc, FinInt).
getInt(Start, Finish, A, A):-
0 > Finish - Start.
itCounts(X,Y,Z,Q):-
member(XLastDigit,[1,2,3,4,5,6]),
FromY is XLastDigit+1,
numlist(FromY, 7, ListYLastDigit),
member(YLastDigit, ListYLastDigit),
FromZ is YLastDigit+1,
numlist(FromZ, 8, ListZLastDigit),
member(ZLastDigit,ListZLastDigit),
FromQ is ZLastDigit+1,
member(YSign,[-1,1]),
member(ZSign,[-1,1]),
member(QSign,[-1,1]),
0 is XLastDigit + YSign*YLastDigit + ZSign*ZLastDigit + QSign*9,
makeInt(1, XLastDigit, FirstNumber),
makeInt(FromY, YLastDigit, SecondNumber),
makeInt(FromZ, ZLastDigit, ThirdNumber),
makeInt(FromQ, 9, FourthNumber),
X is FirstNumber,
Y is YSign*SecondNumber,
Z is ZSign*ThirdNumber,
Q is QSign*FourthNumber,
100 =:= X + Y + Z + Q.
Not sure this stands for an optimization. The code is just shorter:
sum_123456789_eq_100_with_3_sum_or_sub(L) :-
append([G1,G2,G3,G4], [0'1,0'2,0'3,0'4,0'5,0'6,0'7,0'8,0'9]),
maplist([X]>>(length(X,N), N>0), [G1,G2,G3,G4]),
maplist([G,F]>>(member(Op, [0'+,0'-]),F=[Op|G]), [G2,G3,G4], [F2,F3,F4]),
append([G1,F2,F3,F4], L),
read_term_from_codes(L, T, []),
100 is T.
It took me a while, but I got what your code is doing. It's something like this:
itCounts(X,Y,Z,Q) :- % generate X, Y, Z, and Q s.t. X+Y+Z+Q=100, etc.
generate X as a list of digits
do the same for Y, Z, and Q
pick the signs for Y, Z, and Q
convert all those lists of digits into numbers
verify that, with the signs, they add to 100.
The inefficiency here is that the testing is all done at the last minute. You can improve the efficiency if you can throw out some possible solutions as soon as you pick one of your numbers, that is, testing earlier.
itCounts(X,Y,Z,Q) :- % generate X, Y, Z, and Q s.t. X+Y+Z+Q=100, etc.
generate X as a list of digits, and convert it to a number
if it's so big or small the rest can't possibly bring the sum back to 100, fail
generate Y as a list of digits, convert to number, and pick it sign
if it's so big or so small the rest can't possibly bring the sum to 100, fail
do the same for Z
do the same for Q
Your function is running pretty fast already, even if I search all possible solutions. It only picks 6 X's; 42 Y's; 224 Z's; and 15 Q's. I don't think optimizing will be worth your while.
But if you really wanted to: I tested this by putting a testing function immediately after selecting an X. It reduced the 6 X's to 3 (all before finding the solution); 42 Y's to 30; 224 Z's to 184; and 15 Q's to 11. I believe we could reduce it further by testing immediately after a Y is picked, to see whether X YSign Y is already so large or small there can be no solution.
In PROLOG programs that are more computationally intensive, putting parts of the 'test' earlier in 'generate and test' algorithms can help a lot.
I've got a homework question that's been puzzling me. It asks that you prove that the function Sum[log(i)*i^3, {i, n}) (ie. the sum of log(i)*i^3 from i=1 to n) is big-theta (log(n)*n^4).
I know that Sum[i^3, {i, n}] is ( (n(n+1))/2 )^2 and that Sum[log(i), {i, n}) is log(n!), but I'm not sure if 1) I can treat these two separately since they're part of the same product inside the sum, and 2) how to start getting this into a form that will help me with the proof.
Any help would be really appreciated. Thanks!
The series looks like this - log 1 + log 2 * 2^3 + log 3 * 3^3....(upto n terms)
the sum of which does not converge. So if we integrate it
Integral to (1 to infinity) [ logn * n^3] (integration by parts)
you will get 1/4*logn * n^4 - 1/16* (n^4)
It is clear that the dominating term there is logn*n^4, therefore it belongs to Big Theta(log n * n^4)
The other way you could look at it is -
The series looks like log 1 + log2 * 8 + log 3 * 27......+ log n * n^3.
You could think of log n as the term with the highest value, since all logarithmic functions grow at the same rate asymptotically,
You could treat the above series as log n (1 + 2^3 + 3^3...) which is
log n [n^2 ( n + 1)^2]/4
Assuming f(n) = log n * n^4
g(n) = log n [n^2 ( n + 1)^2]/4
You could show that lim (n tends to inf) for f(n)/g(n) will be a constant [applying L'Hopital's rule]
That's another way to prove that the function g(n) belongs to Big Theta (f(n)).
Hope that helps.
Hint for one part of your solution: how large is the sum of the last two summands of your left sum?
Hint for the second part: If you divide your left side (the sum) by the right side, how many summands to you get? How large is the largest one?
Hint for the first part again: Find a simple lower estimate for the sum from n/2 to n in your first expression.
Try BigO limit definition and use calculus.
For calculus you might like to use some Computer Algebra System.
In following answer, I've shown, how to do this with Maxima Opensource CAS :
Asymptotic Complexity of Logarithms and Powers
So I thought that negative numbers, when mod'ed should be put into positive space... I cant get this to happen in objective-c
I expect this:
-1 % 3 = 2
0 % 3 = 0
1 % 3 = 1
2 % 3 = 2
But get this
-1 % 3 = -1
0 % 3 = 0
1 % 3 = 1
2 % 3 = 2
Why is this and is there a workaround?
result = n % 3;
if( result < 0 ) result += 3;
Don't perform extra mod operations as suggested in the other answers. They are very expensive and unnecessary.
In C and Objective-C, the division and modulus operators perform truncation towards zero. a / b is floor(a / b) if a / b > 0, otherwise it is ceiling(a / b) if a / b < 0. It is always the case that a == (a / b) * b + (a % b), unless of course b is 0. As a consequence, positive % positive == positive, positive % negative == positive, negative % positive == negative, and negative % negative == negative (you can work out the logic for all 4 cases, although it's a little tricky).
If n has a limited range, then you can get the result you want simply by adding a known constant multiple of 3 that is greater that the absolute value of the minimum.
For example, if n is limited to -1000..2000, then you can use the expression:
result = (n+1002) % 3;
Make sure the maximum plus your constant will not overflow when summed.
We have a problem of language:
math-er-says: i take this number plus that number mod other-number
code-er-hears: I add two numbers and then devide the result by other-number
code-er-says: what about negative numbers?
math-er-says: WHAT? fields mod other-number don't have a concept of negative numbers?
code-er-says: field what? ...
the math person in this conversations is talking about doing math in a circular number line. If you subtract off the bottom you wrap around to the top.
the code person is talking about an operator that calculates remainder.
In this case you want the mathematician's mod operator and have the remainder function at your disposal. you can convert the remainder operator into the mathematician's mod operator by checking to see if you fell of the bottom each time you do subtraction.
If this will be the behavior, and you know that it will be, then for m % n = r, just use r = n + r. If you're unsure of what will happen here, use then r = r % n.
Edit: To sum up, use r = ( n + ( m % n ) ) % n
I would have expected a positive number, as well, but I found this, from ISO/IEC 14882:2003 : Programming languages -- C++, 5.6.4 (found in the Wikipedia article on the modulus operation):
The binary % operator yields the remainder from the division of the first expression by the second. .... If both operands are nonnegative then the remainder is nonnegative; if not, the sign of the remainder is implementation-defined
JavaScript does this, too. I've been caught by it a couple times. Think of it as a reflection around zero rather than a continuation.
Why: because that is the way the mod operator is specified in the C-standard (Remember that Objective-C is an extension of C). It confuses most people I know (like me) because it is surprising and you have to remember it.
As to a workaround: I would use uncleo's.
UncleO's answer is probably more robust, but if you want to do it on a single line, and you're certain the negative value will not be more negative than a single iteration of the mod (for example if you're only ever subtracting at most the mod value at any time) you can simplify it to a single expression:
int result = (n + 3) % 3;
Since you're doing the mod anyway, adding 3 to the initial value has no effect unless n is negative (but not less than -3) in which case it causes result to be the expected positive modulus.
There are two choices for the remainder, and the sign depends on the language. ANSI C chooses the sign of the dividend. I would suspect this is why you see Objective-C doing so also. See the wikipedia entry as well.
Not only java script, almost all the languages shows the wrong answer'
what coneybeare said is correct, when we have mode'd we have to get remainder
Remainder is nothing but which remains after division and it should be a positive integer....
If you check the number line you can understand that
I also face the same issue in VB and and it made me to forcefully add extra check like
if the result is a negative we have to add the divisor to the result
Instead of a%b
Use: a-b*floor((float)a/(float)b)
You're expecting remainder and are using modulo. In math they are the same thing, in C they are different. GNU-C has Rem() and Mod(), objective-c only has mod() so you will have to use the code above to simulate rem function (which is the same as mod in the math world, but not in the programming world [for most languages at least])
Also note you could define an easy to use macro for this.
#define rem(a,b) ((int)(a-b*floor((float)a/(float)b)))
Then you could just use rem(-1,3) in your code and it should work fine.
I'm new to cryptography and modular arithmetic. So, I'm sure it's a silly question, but I can't help it.
How do I calculate a from
pow(a,q) = 1 (mod p),
where p and q are known? I don't get the "1 (mod p)" part, it equals to 1, doesn't it? If so, than what is "mod p" about?
Is this the same as
pow(a,-q) (mod p) = 1?
The (mod p) part refers not to the right hand side, but to the equality sign: it says that modulo p, pow(a,q) and 1 are equal. For instance, "modulo 10, 246126 and 7868726 are equal" (and they are also both equal to 6 modulo 10): two numbers x and y are equal modulo p if they have the same remainder on dividing by p, or equivalently, if p divides x-y.
Since you seem to be coming from a programming perspective, another way of saying it is that pow(a,q)%p=1, where "%" is the "remainder" operator as implemented in several languages (assuming that p>1).
You should read the Wikipedia article on Modular arithmetic, or any elementary number theory book (or even a cryptography book, since it is likely to introduce modular arithmetic).
To answer your other question: there is no general formula for finding such an a (to the best of my knowledge) in general. Assuming that p is prime, and using Fermat's little theorem to reduce q modulo p-1, and assuming that q divides p-1 (or else no such a exists), you can produce such an a by taking a primitive root of p and raising it to the power (p-1)/q. [And more generally, when p is not prime, you can reduce q modulo φ(p), then assuming it divides φ(p) and you know a primitive root (say r) mod p, you can take r to the power of φ(p)/q, where φ is the totient function -- this comes from Euler's theorem.]
Not silly at all, as this is the basis for public-key encryption. You can find an excellent discussion on this at http://home.scarlet.be/~ping1339/congr.htm#The-equation-a%3Csup%3Ex.
PKI works by choosing p and q that are large and relatively prime. One (say p) becomes your private key and the other (q) is your public key. The encryption is "broken" if an attacker guesses p, given aq (the encrypted message) and q (your public key).
So, to answer your question:
aq = 1 mod p
This means aq is a number that leaves a remainder of 1 when divided by p. We don't care about the integer portion of the quotient, so we can write:
aq / p = n + 1/p
for any integer value of n. If we multiply both sides of the equation by p, we have:
aq = np + 1
Solving for a we have:
a = (np+1)1/q
The final step is to find a value of n that generates the original value of a. I don't know of any way to do this other than trial and error -- which equates to a "brute force" attempt to break the encryption.