How can I get CPU usage per task on Symbian^3? - symbian

Is there a tool to see CPU usage of a task/thread on a Symbian^3 phone?
Using PerfMon I only see the global CPU usage.

Yep, I didn't put the CPU count per process there, since you can not really get it. Also the global CPU measurement is a bit fake to be fully honest. its simple having a idle-priority timer going off, and if it goes off everytime then there is no CPU load, and if it never gets off, then the CPU load is 100 %. In efect its a bit relative, but have to say it has worked on the tasks I have needed it for..
BTW, re-did the site, and now all Symbian apps are at: http://www.drjukka.com/YBrowser.html, lets see how long it takes me to push all codes into the Github, anyway, they'll end up there hopefully before 7th birthday of the Y-Tasks app.

May be Dr. Yukka's Y-Task application will be useful: http://www.drjukka.com/YTasks.html

Related

tensorflow facemesh delay in tracking landmark points

I am using face-mesh for one of ma POC the landmarks and detection are absolutely superb.
But what i found is while moving the face the tracking is little delayed ? is there any configuration available to sort this out ? when i move quickly it taking even more time to detect landmarks on right place. i tried with both wasm and webgl. perfomance wise absolutely no problem here but. tracking is delaying which is not giving the expected result.
is anything i'm missing to get this right ? any help on this is highly appreciated
A small delay is to be expected as inference will probably be tens of milliseconds at least from my experience.
What FPS are you getting? It will very much depend on your hardware of course. As WASM improves hopefully things will get faster too for free on CPU.
On my machine (Desktop running GTX 1070) I get around 50 FPS in WebGL and 25 FPS with just the i7 CPU via WASM only.
From what you have said I do not think you have missed anything. If you could post a screen recording of the situation and live demo eg on CodePen or Glitch, that would could help me compare with what I am seeing to confirm this.

Mac app costs so much CPU after sleep

My app runs well at launch. Normally, it only use 0.2% CPU while running.
But keep using the app day after day, it now costs 15% CPU, which is really huge for me.
I think thing goes wrong, after I sleep my Macbook many times. I don't turn off my Macbook.
I don't know where to investigate this bug?
PS: my app uses many NSTimer, which is added to NSRunLoopCommonModes
Thanks,
The only real answer is: Profile and see where the time is being used.
In sleep mode, the operating system and other programs generally don't do much or anything. If your app continues to loop and ignores sleep mode, your percentual CPU usage will go up because other programs use less.
Ideally your app should check for sleep mode and then adjust its behaviour, e.g. suspend the loop.

Using only free CPU time with Objective-C program

The BOINC client (does distributed processing jobs like SETI#home does) is able to turn processing on or off based on whether other processes are using a certain percentage of CPU time. That is, if the user starts to do some work and their processes start using 60% CPU, BOINC can pause to avoid interfering with the user's work.
I would like to do the same thing (monitor CPU usage by other processes). The difficulty as I see it is not monitoring CPU usage, but rather making sure that the information isn't skewed by my own usage. For example, if my process is using a ton of CPU time it may prevent another process from using enough to trigger the pause.
Can someone point me in the right direction? Even a suggestion for what to search for would be useful. I'm not really sure what this feature would be called.
You can use NSTask to set the 'nice' value of the process when your process starts.
Also [[NSThread mainThread] setThreadPriority:0.0]
where priority value is between 0.0 and 1.0 is a Cocoa API which may save you frakking about with sudo

Creating a heater application

This might seem weird, but I'm interesting in creating an electric heater out of my computer, that is program an application, that heats up my PC, and I need some help.
I currently made an application, that runs infinite loops on the GPU (using a little shader), and on the CPU cores, however I'm interesting in getting the ram going too, as well as the several output ports, so.. About the ram heating, just allocate, and start randomly accessing and writing using all 8 cores?
And what about triggering CD-ROM, floppy etc, how do I do this?
How about heater with a purpose? Just run World Community Grid, create tons of heat while making your computer do valuable computations for science. It runs the processors wide open, is stable, and isn't just wasting cycles.
Have a look at How to stress test a computer If your interested in making your own try searching for open source stress test software that you could modify to your liking.
Use Furmark together with LinX/Prime95. Max out your settings. Make sure you have a strong enough PSU.
There`s a torture test option for CPU & RAM in Prime95 that looks like what you want. As for the GPU, there is Furmark which achieves the same kind of stress.
The heat from the other components will likely be not relevant (unless you have something really specific like a physx card) if you stress enough your cpu and gpu imho.

How To Simulate Lower CPU Processor Machines For Browser Testing

We have some users which are using lower-CPU powered machines and they're encountering slow response times using our web application. Is there any way for me to do testing so that I can simulate lower CPU rates?
For example, I have 2.3 Ghz computing power, can I lower it to 1.6 Ghz or lower so that I may be able to test it?
BTW, our customers are using Windows. I have to simulate low computing power on Internet Explorer as browser.
Most new CPUs multiplier can easily be lowered (Intel: Speedstep, AMD: PowerNow!). This is used to save power. With RMclock you can manually adjust your multiplier and thus lower your frequency and make your pc slower. I use this tool myself so I can tell you that it works.
http://cpu.rightmark.org/products/rmclock.shtml
The virtual machine Bochs(pronounced boxes) allows you to set a instructions per second directive. It's probably the slowest emulator out there as it is though...
Create some virtual machines.
You can use VirtualPC or VirtualBox both are free.
I would recommend to start something on the background which eats up all your processor cycles.
A program which finds primenumbers or something similar.
Another slight option in addition to those above is to boot windows in a lower resource config. Go to the start menu,, select run and type MSCONFIG. You can go to the boot tab, click on advanced options and limit the memory and number of of processsors. It's not as robust as the above, but it does give you another option.
Lowering the CPU clock doesn't always give expected results.
Newer CPUs feature architecture improvements which make them more efficient on an equvialent clock basis than older chips. Incidentally, because of this virtual machines are a bad way of testing performance for "older" tech as well.
Your best bet is to simply buy a couple of older machines. Using similar RAM (types and amounts), processor, motherboard chipsets, hard drives, and video cards. All of which feed into the total performance of the machine itself.
I bring the other components up because changing just one of them can have an impact on even browser performance. A prime example is memory. If your clients are constrained to something like 512MB of RAM, the machines could be performing a lot of hard drive access for VM swaps, even for just running the browser. In this situation downgrading the clock speed on your processor while still retaining your 2GB (assuming) of RAM would still not perform anywhere near the same even if everything else was equal.
Isak Savo'sanswer works, but can be a bit finicky, as the modern tpl is going to try and limit cpu load as much as possible. When I tested it out, It was hard (though possible with some testing) to consistently get the types of cpu usages I wanted.
Then I remembered, http://www.cpukiller.com/, which does this already. Highly recommended. As an aside, I found this util from playing old 90s games on modern machines, back when frame rate was pegged to cpu clock time, making playing them on modern computers way too fast. Great utility.
Another big difference between high-performance and low-performance CPUs is the number of cores available. This can realistically differ by a factor of 4, way more than the difference in clock frequency you're likely to encounter.
You can solve this by setting the thread affinity. Even IE6 will use 13 threads just to show google.com. That means it will benefit from a multi-core CPU. But if you set the thread affinity to one core only, all 13 IE threads will have to share that one core.
I understand that this question is pretty old, but here are some receipts I personally use (not only for Web development):
BES. I'm getting some weird results while using it.
Go to Control Panel\All Control Panel Items\Power Options\Edit Plan Settings\Change Advanced Power Settings, then go to the "Processor" section and set it's maximum state to 5% (or something else). It works only if your processor supports dynamic multiplier change and ACPI driver is installed correctly.
Run Task Manager and set processor affinity to a single core (or whatever number of cores you want) for your browser's (or any other's) process. Not a best practice for browsers, because JavaScript implementations are usually single-threaded, but, as far as I see, modern browsers actually DO use multiple cores.
There are a few different methods to accomplish this.
If you're using VirtualBox, go into the Settings for the VM you want to slow the CPU speed for. Go to System > Processor, then set the Execution Cap. The percentage controls how slow it will go: lower values are slower relative to the regular speed. In practice, I've noticed the results to be choppy, although it does technically work.
It is also possible to set the CPU speed for the whole system. In the Windows 10 Settings app, go to System > Power & Sleep. Then click Additional Power Settings on the right hand side. Go to Change Plan Settings for the currently selected plan, then click Change Advanced Power Plan Settings. Scroll down to Processor Power Management and set the Maximum Processor State. Again, this is a percentage. Although this does work, I find that in practice, it doesn't have a big impact even when the percentage is set very low.
If you're dealing with a videogame that uses DirectX or OpenGL and doesn't have a framerate cap, another common method is to force Vsync on in your graphics driver settings. This will usually slow the rendering to about 60 FPS which may be enough to play at a reasonable rate. However, it will only work for applications using 3D hardware rendering specifically.
Finally: if you'd rather not use a VM, and don't want to change a system global setting, but would rather simulate an old CPU for one specific process only, then I have my own program to do that called Old CPU Simulator.
The main brain of the operation is a command line tool written in C++, but there is also a GUI wrapper written in C#. The GUI requires .NET Framework 4.0. The default settings should be fine in most cases - just select the CPU you'd like to simulate under Target Rate, then hit New and browse for the program you'd like to run.
https://github.com/tomysshadow/OldCPUSimulator (click the Releases tab on the right for binaries.)
The concept is to suspend and resume the process at a precise rate, and because it happens so quickly the process will appear to just be running slowly. For example, by suspending a process for 3 milliseconds, then resuming it for 1 millisecond, it will appear to be running at 25% speed. By controlling the ratio of time suspended vs. time resumed, it is possible to simulate different speeds. This is completely API agnostic (it doesn't hook DirectX, OpenGL, etc. it'll work with a command line program if you want.)
Old CPU Simulator does not ask for a percentage, but rather, the clock speed to simulate (which it calls the Target Rate.) It then automatically determines, based on your CPU's real clock speed, the percentage to use. Although clock speed is not the only factor that has improved computer performance over time (there are also SSDs, faster GPUs, more RAM, multithreaded performance, etc.) it's a good enough approximation to get fairly consistent results across machines given the same Target Rate. It also supports other options that may help with consistency, such as setting the process affinity to one.
It implements three different methods of suspending and resuming a process and will use the best available: NtSuspendProcess, NtQuerySystemInformation, or Toolhelp Snapshots. It also uses timeBeginPeriod and timeEndPeriod to achieve high precision timing without busy looping. Note that this is not an emulator; the binary still runs natively. If you like, you can view the source to see how it's implemented - it's not a large project. On my machine, Old CPU Simulator uses less than 1% CPU and less than 1 MB of memory, so the program itself is quite efficient (unlike running intensive programs to intentionally slow the CPU.)