I am implementing a timetabling application in the Drools Planner application. They have included:
N queens
allocating computer processes into n computers with constrained resources
Allocating beds for patients, each bed having special requirements
Allocating students for examinations
and so on.
I want to practice simple planning problems like #1 and #2 to hone my Drools Planner skills. I prefer state problems over path problems.
What are simple enough planning problems who have obvious feasible solutions?
Is there any online resource to get such problems and problem datasets?
As a general answer you may check datasets for machine learning research. The list contains datasets growing in size that you may use for different things including planning problems.
project euler and eclipseclp are also nice resources.
Related
I am looking for practical problem (or implementations, applications) examples which are effectively algoritmized using swarm intelligence. I found that multicriteria optimization is one example. Are there any others?
IMHO swarm-intelligence should be added to the tags
Are you looking for toy problems or more for real-world applications?
In the latter category I know variants on swarm intelligence algorithms are used in Hollywood for CGI animations such as large (animated) armies riding the fields of battle.
Related but more towards the toy-problem end of the spectrum you can model large crowds with similar algorithms, and use it for example to simulate disaster-scenarios. AFAIK the Dutch institute TNO has research groups on this topic, though I couldn't find an English link just by googling.
One suggestion for a place to start further investigation would be this PDF book:
http://www.cs.vu.nl/~schut/dbldot/collectivae/sci/sci.pdf
That book also has an appendix (B) with some sample projects you could try and work on.
If you want to get a head start there are several frameworks (scientific use) for multi-agent systems such as swarming intelligence (most of 'em are written with Java I think). Some of them include sample apps too. For example have a look at these:
Repast:
http://repast.sourceforge.net/repast_3/
Swarm.org:
http://swarm.org/
Netlogo:
http://ccl.northwestern.edu/netlogo
Post edited, added more info.
I will take your question like: what kind of real-world problems SI can solve?
There are alot. Swarm intelligence is based on the complex behaviour of swarms, where agents in the swarm coordinate and cooperate by executing very simple rules to generate an emergent complex auto organized behaviour. Also, the agents often make a deliberation process to make efficient decisions, and also, the emergent behaviour of the swarms allows them to find patterns, learn and adapt to their environment. Therefore, real-world applications based on SI are those that often required coordination and cooperation techniques, optimization process, exploratory analysis, dynamical poblems, etc. Some of these are:
Optimization techniques (mathematical functions for example)
Coordination of a swarm of robots (to organize inventory for example)
Routing in communication networks. (This is also dynamical combinatorial optimization)
Data analysis (usually exploratory, like clustering). SI has alot of applications in data mining and machine learning. This allows SI algorithms to find interesting patterns in big sets of data.
Np problems in general
I'm sure there are alot more. You should check the book:
"Swarm Intelligence: from natural to artificial systems". This is the basic book.
Take care.
I was recently talking with someone in Resource Management and we discussed the problem of assigning developers to projects when there are many variables to consider (of possibly different weights), e.g.:
The developer's skills & the technology/domain of the project
The developer's travel preferences & the location of the project
The developer's interests and the nature of the project
The basic problem the RM person had to deal with on a regular basis was this: given X developers where each developers has a unique set of attributes/preferences, assign them to Y projects where each project has its own set of unique attributes/requirements.
It seems clear to me that this is a very mathematical problem; it reminds me of old optimization problems from algebra and/or calculus (I don't remember which) back in high school: you know, find the optimal dimensions for a container to hold the maximum volume given this amount of material—that sort of thing.
My question isn't about the math, but rather whether there are any software projects/libraries out there designed to address this kind of problem. Does anyone know of any?
My question isn't about the math, but rather whether there are any software projects/libraries out there designed to address this kind of problem. Does anyone know of any?
In my humble opinion, I think that this is putting the cart before the horse. You first need to figure out what problem you want to solve. Then, you can look for solutions.
For example, if you formulate the problem by assigning some kind of numerical compatibility score to every developer/project pair with the goal of maximizing the total sum of compatibility scores, then you have a maximum-weight matching problem which can be solved with the Hungarian algorithm. Conveniently, this algorithm is implemented as part of Google's or-tools library.
On the other hand, let's say that you find that computing compatibility scores to be infeasible or unreasonable. Instead, let's say that each developer ranks all the projects from best to worst (e.g.: in terms of preference) and, similarly, each project ranks each developer from best to worst (e.g.: in terms of suitability to the project). In this case, you have an instance of the Stable Marriage problem, which is solved by the Gale-Shapley algorithm. I don't have a pointer to an established library for G-S, but it's simple enough that it seems that lots of people just code their own.
Yes, there are mathematical methods for solving a type of problem which this problem can be shoehorned into. It is the natural consequence of thinking of developers as "resources", like machine parts, largely interchangeable, their individuality easily reduced to simple numerical parameters. You can make up rules such as
The fitness value is equal to the subject skill parameter multiplied by the square root of the reliability index.
and never worry about them again. The same rules can be applied to different developers, different subjects, different scales of projects (with a SLOC scaling factor of, say, 1.5). No insight or real leadership is needed, the equations make everything precise and "assured". The best thing about this approach is that when the resources fail to perform the way your equations say they should, you can just reduce their performance scores to make them fit. And if someone has already written the tool, then you don't even have to worry about the math.
(It is interesting to note that Resource Management people always seem to impose such metrics on others in an organization -- thereby making their own jobs easier-- and never on themselves...)
I am looking for a project idea in distributed processing on Unix based systems. I wish to use only the C programming language. I have to finish the project in 4 months and it's a part of my course work. Can someone help me with an idea?
Cryptography problems
Distributed Ray Tracer
Chess AI (really, AI for any game)
Large Prime Number Search
Web crawler or other search mechanism
Generic Problem Solver (push out problem definition on the fly, followed by problem data).
Note on the last one:
An example would be if you have a gaming website with lots of board games that you were coming out with all the time. You don't want to have to install new clients on all your servers every time you write a new AI for a board game, so you have a program which you can send new AIs to and then after that you can just send the game data and the pushed AI will be used to solve the problem. This is best used for problems which can be broken into smaller chunks.
It is hard to answer without knowing anything about performance, the scale of the project, what you are trying to accomplish, etc. For example, is it one task or multiple tasks? Is the project just totally open?
4 months is pretty short, but maybe some kind of physics problem or math problem. Sorting or some kind of database work might be dull but beneficial.
Check out mapreduce for ideas! I was really motivated by this work, personally.
We used distributed processing here at work, but it's such a broad field..
Yeah.
Why not write a distributed compiler. You may then present an interface for people to compile things on the fly, and it will be passed to your distribute compilenet. Java is probably well-suited, and you'll get to do fun things, like be very mindful of security and so on.
The BOINC project is always looking for help and is very interesting:
http://boinc.berkeley.edu/
If you want to leave your mark and change the way we search the web,
look into B-Trees.
B-Trees and offspring/variants are the working horse of the internet.
Google uses them extensively to index the web.
Database indexes/indices are B-Tree offspring/variants.
Every LAMP system uses a database and indexes/indices.
Also, they are used extensively in distributed VLDB (Very Large DataBases)
Perhaps you can improve existing distributed databases (Cassandra and HBase)
These are lofty goals, but for me, this would leave a lasting mark
in the way Web data is processed, indexed and stored.
Write a distributed, fault tolerant, redundant network B+Tree or B*Tree.
Read Drozdek's book Data Structures and Algorithms in C++.
It's a good survey of B-Trees.
Read about skip trees
http://www.cs.huji.ac.il/~ittaia/papers/AAY-OPODIS05.pdf
Read about Efficient B-tree Based Indexing for Cloud Data Processing
http://www.comp.nus.edu.sg/~ooibc/vldb10-cgindex.pdf
Google search "Network B+Tree"
https://www.google.com/search?rlz=1C1CHKZ_enUS431US431&sourceid=chrome&ie=UTF-8&q=Network+B%2BTree
We've got a fairly large application running on VxWorks 5.5.1 that's been developed and modified for around 10 years now. We have some simple home-grown tools to show that we are not using too much memory or too much processor, but we don't have a good feel for how much headroom we actually have. It's starting to make it difficult to do estimates for future enhancements.
Does anybody have any suggestions on how to profile such a system? We've never had much luck getting the Wind River tools to work.
For bonus points: the other complication is that our system has very different behaviors at different times; during start-up it does a lot of stuff, then it sits relatively idle except for brief bursts of activity. If there is a profiler with some programmatic way to have to record state information, I think that'd be very useful too.
FWIW, this is compiled with GCC and written entirely in C.
I've done a lot of performance tuning of various kinds of software, including embedded applications. I won't discuss memory profiling - I think that is a different issue.
I can only guess where the "well-known" idea originated that to find performance problems you need to measure performance of various parts. That is a top-down approach, similar to the way governments try to control budget waste, by subdividing. IMHO, it doesn't work very well.
Measurement is OK for seeing if what you did made a difference, but it is poor at telling you what to fix.
What is good at telling you what to fix is a bottom-up approach, in which you examine a representative sample of microscopic units of what is being spent, and finding out the full explanation of why each one is being spent. This works for a simple statistical reason. If there is a reason why some percent (for example 40%) of samples can be saved, on average 40% of samples will show it, and it doesn't require a huge number of samples. It does require that you examine each sample carefully, and not just sort of aggregate them into bigger bunches.
As a historical example, this is what Harry Truman did at the outbreak of the U.S. involvement in WW II. There was terrific waste in the defense industry. He just got in his car, drove out to the factories, and interviewed the people standing around. Then he went back to the U.S. Senate, explained what the problems were exactly, and got them fixed.
Maybe this is more of an answer than you wanted. Specifically, this is the method I use, and this is a blow-by-blow example of it.
ADDED: I guess the idea of finding-by-measuring is simply natural. Around '82 I was working on an embedded system, and I needed to do some performance tuning. The hardware engineer offered to put a timer on the board that I could read (providing from his plenty). IOW he assumed that finding performance problems required timing. I thanked him and declined, because by that time I knew and trusted the random-halt technique (done with an in-circuit-emulator).
If you have the Auxiliary Clock available, you could use the SPY utility (configurable via the config.h file) which does give you a very rough approximation of which tasks are using the CPU.
The nice thing about it is that it does not require being attached to the Tornado environment and you can use it from the Kernel shell.
Otherwise, btpierre's suggestion of using taskHookAdd has been used successfully in the past.
I've worked on systems that have had luck using locally-built monitoring utilities based on taskSwitchHookAdd and related functions (delete hook, etc).
"Simply" use this to track the number of ticks a given task runs. I realize that this is fairly gross scale information for profiling, but it can be useful depending on your needs.
To see how much cpu% each task is using, calculate the percentage of ticks assigned to each task.
To see how much headroom you have, add a lowest priority "idle" task that just does "while(1){}", and see how much cpu% it is assigned to it. Roughly speaking, that's your headroom.
I keep hearing from associates about grid computing which, from what I can gather, is highly distributed stuff along the lines of SETI#Home.
Is anyone working on these sort of systems for business use? My interest is in figuring out if there's a commercial reason for starting software development in this field.
Rendering Farms such as Pixar
Model Evaluation e.g. weather, financials, military
Architectural Engineering e.g. earthquakes.
To list a few.
Grid computing is really only needed if you have a lot of WORK that needs to be done, like folding proteins, otherwise a simple server farm will likely be plenty.
Obviously Google are major users of Grid Computing; all their search service relies on it, and many others.
Engines such as BigTable are based on using lots of nodes for storage and computation. These are commercially very useful because they're a good alternative to a small number of big servers, providing better redundancy and cost effective scaling.
The downside is that the software is fiendishly difficult to write, but Google seem to manage that one ok :)
So anything which requires big storage and/or lots of computation.
I used to work for these guys. Grid computing is used all over. Anyone who makes computer chips uses them to test designs before getting physical silicon cut. Financial websites use grids to calculate if you qualify for that loan. These days they are starting to replace big iron in a lot of places, as they tend to be cheaper to maintain over the long term.