I am generating a classic line graph using core graphics, which renders and work very well.
There are several lines stacking one after another using "layer.zPosition"
-(void)drawRect:(CGRect)rect {
float colorChange = (0.1 * [self tag]);
theFillColor = [UIColor colorWithRed:(colorChange) green:(colorChange*0.50) blue:colorChange alpha:0.75f].CGColor;
CGContextRef c = UIGraphicsGetCurrentContext();
CGFloat white[4] = {1.0f, 1.0f, 1.0f, 1.0f};
CGContextSetFillColorWithColor(c, theFillColor);
CGContextSetStrokeColor(c, white);
CGContextSetLineWidth(c, 2.0f);
CGContextBeginPath(c);
//
CGContextMoveToPoint(c, 0.0f, 200-[[array objectAtIndex:0] floatValue]);
CGContextAddLineToPoint(c, 0.0f, 200-[[array objectAtIndex:0] floatValue]);
//
distancePerPoint = (rect.size.width / [array count]);
float lastPointX = 750.0;
for (int i = 0 ; i < [array count] ; i++)
{
CGContextAddLineToPoint(c, (i*distancePerPoint), 200-[[array objectAtIndex:i] floatValue]);
lastPointX = (i*distancePerPoint);
}
//
CGContextAddLineToPoint(c, lastPointX, 200.0);
CGContextAddLineToPoint(c, 0, 200);
CGContextClosePath(c);
//
//CGContextFillPath(c);
CGContextDrawPath(c, kCGPathFillStroke);
//CGContextDrawPath(c, kCGPathStroke);
}
(The above code is generating the following result):
(I can post the code I am using for the 3d effect if needed, but the way I do it is generically by
CATransform3D rotationAndPerspectiveTransform = CATransform3DIdentity;)
Question:
How can I transform my line graph to have depth ?
I would like to have a "depth" to the line(s) graph (thus making them a ribbon) as later I would like to represent them using rotation And Perspective Transform (as stated above)
You can't easily do with with Core Graphics or Core animation because CALayers are "flat" - they work like origami, where you can make 3D structures by connecting rectangles in 3D space, but you can't have arbitrary polygonal 3D shapes.
Actually that's not strictly true, you could look at using CAShapeLayers to do your drawing, and then manipulate them in 3D, but I think this is generally going to be very hard work to calculate where to position each shape and to get the edges to line up correctly.
Really the way to make this kind of 3D structure is to use OpenGL directly.
If you're not too familiar with low-level OpenGL programming, you might want to check out Galaxy Engine or Cocos3D.
Related
I'm about to create a particle simulator in Objective-C on the Mac, using Core Graphics for rendering. I've calculated that Core Graphics is capable of rendering about 1.8*10^6 1x1 colored pixels per second to a view using CGContextFillRect, which works out to about 250,000 1x1 particles per frame being rendered to the screen, for the FPS to remain at 60.
A limit of 250,000 particles isn't that great - I'd like that number to be much higher. What is the most efficient way to render this many 1x1 coloured pixels to a view?
Is there a way to better utilise the GPU?
This is the code I have been using:
- (void)drawRect:(NSRect)dirtyRect {
[super drawRect:dirtyRect];
CGContextRef ctx = [[NSGraphicsContext currentContext] graphicsPort];
CGContextSetRGBFillColor (ctx, 1, 0, 0, 1);
CFTimeInterval t1 = CFAbsoluteTimeGetCurrent();
CGRect point = CGRectMake(10.0f, 10.0f, 1.0f, 1.0f);
for (int i = 0; i < 20000000; i++) {
CGContextFillRect (ctx, point);
}
NSLog(#"%.10f", CFAbsoluteTimeGetCurrent() - t1);
}
I'm writing a small boardgame for Mac OS X using Cocoa. I the actual grid is drawn as follows:
- (void)drawRect:(NSRect)rect
{
for (int x=0; x < GRIDSIZE; x++) {
for (int y=0; y < GRIDSIZE; y++) {
float ix = x*cellWidth;
float iy = y*cellHeight;
NSColor *color = (x % 2 == y % 2) ? boardColors[0] : boardColors[1];
[color set];
NSRect r = NSMakeRect(ix, iy, cellWidth, cellHeight);
NSBezierPath *path = [NSBezierPath bezierPath];
[path appendBezierPathWithRect:r];
[path fill];
[path stroke];
}
}
}
This works great, except that I see some errors in colors between the tiles. I guess this is due to some antialiasing or similar. See screenshots below (hopefully you can also see the same problems... its some black lines where the tiles overlap):
Therefore I have these questions:
Is there any way I can remove these graphical artefacts while still maintaining a resizable/scalable board?
Should I rather use some other graphical library like Core Graphics or OpenGL?
Update:
const int GRIDSIZE = 16;
cellWidth = (frame.size.width / GRIDSIZE);
cellHeight = (frame.size.height / GRIDSIZE);
If you want crisp rectangles you need to align coordinates so that they match the underlying pixels. NSView has a method for this purpose: - (NSRect)backingAlignedRect:(NSRect)aRect options:(NSAlignmentOptions)options. Here's a complete example for drawing the grid:
const NSInteger GRIDSIZE = 16;
- (void)drawRect:(NSRect)dirtyRect {
for (NSUInteger x = 0; x < GRIDSIZE; x++) {
for (NSUInteger y = 0; y < GRIDSIZE; y++) {
NSColor *color = (x % 2 == y % 2) ? [NSColor greenColor] : [NSColor redColor];
[color set];
[NSBezierPath fillRect:[self rectOfCellAtColumn:x row:y]];
}
}
}
- (NSRect)rectOfCellAtColumn:(NSUInteger)column row:(NSUInteger)row {
NSRect frame = [self frame];
CGFloat cellWidth = frame.size.width / GRIDSIZE;
CGFloat cellHeight = frame.size.height / GRIDSIZE;
CGFloat x = column * cellWidth;
CGFloat y = row * cellHeight;
NSRect rect = NSMakeRect(x, y, cellWidth, cellHeight);
NSAlignmentOptions alignOpts = NSAlignMinXNearest | NSAlignMinYNearest |
NSAlignMaxXNearest | NSAlignMaxYNearest ;
return [self backingAlignedRect:rect options:alignOpts];
}
Note that you don't need stroke to draw a game board. To draw pixel aligned strokes you need to remember that coordinates in Cocoa actually point to lower left corners of pixels. To crisp lines you need to offset coordinates by half a pixel from integral coordinates so that coordinates point to centers of pixels. For example to draw a crisp border for a grid cell you can do this:
NSRect rect = NSInsetRect([self rectOfCellAtColumn:column row:row], 0.5, 0.5);
[NSBezierPath strokeRect:rect];
First, make sure your stroke color is not black or gray. (You're setting color but is that stroke or fill color? I can never remember.)
Second, what happens if you simply fill with green, then draw red squares over it, or vice-versa?
There are other ways to do what you want, too. You can use the CICheckerboardGenerator to make your background instead.
Alternately, you could also use a CGBitmapContext that you filled by hand.
First of all, if you don't actually want your rectangles to have a border, you shouldn't call [path stroke].
Second, creating a bezier path for filling a rectangle is overkill. You can do the same with NSRectFill(r). This function is probably more efficient and I suspect less prone to introduce rounding errors to your floats – I assume you realize that your floats must not have a fractional part if you want pixel-precise rectangles. I believe that if the width and height of your view is a multiple of GRIDSIZE and you use NSRectFill, the artifacts should go away.
Third, there's the obvious question as to how you want your board drawn if the view's width and height are not a multiple of GRIDSIZE. This is of course not an issue if the size of your view is fixed and a multiple of that constant. If it is not, however, you first have to clarify how you want the possible remainder of the width or height handled. Should there be a border? Should the last cell in the row or column take up the remainder? Or should it rather be distributed equally among the cells of the rows or columns? You might have to accept cells of varying width and/or height. What the best solution for your problem is, depends on your exact requirements.
You might also want to look into other ways of drawing a checkerboard, e.g. using CICheckerboardGenerator or creating a pattern color with an image ([NSColor colorWithPatternImage:yourImage]) and then filling the whole view with it.
There's also the possibility of (temporarily) turning off anti-aliasing. To do that, add the following line to the beginning of your drawing method:
[[NSGraphicsContext currentContext] setShouldAntialias:NO];
My last observation is about your general approach. If your game is going to have more complicated graphics and animations, e.g. animated movement of pieces, you might be better off using OpenGL.
As of iOS 6, you can generate a checkerboard pattern using CICheckerboardGenerator.
You'll want to guard against the force unwraps in here, but here's the basic implementation:
var checkerboardImage: UIImage? {
let filter = CIFilter(name: "CICheckerboardGenerator")!
let width = NSNumber(value: Float(viewSize.width/16))
let center = CIVector(cgPoint: .zero)
let darkColor = CIColor.red
let lightColor = CIColor.green
let sharpness = NSNumber(value: 1.0)
filter.setDefaults()
filter.setValue(width, forKey: "inputWidth")
filter.setValue(center, forKey: "inputCenter")
filter.setValue(darkColor, forKey: "inputColor0")
filter.setValue(lightColor, forKey: "inputColor1")
filter.setValue(sharpness, forKey: "inputSharpness")
let context = CIContext(options: nil)
let cgImage = context.createCGImage(filter.outputImage!, from: viewSize)
let uiImage = UIImage(cgImage: cgImage!, scale: UIScreen.main.scale, orientation: UIImage.Orientation.up)
return uiImage
}
Apple Developer Docs
Your squares overlap. ix + CELLWIDTH is the same coordinate as ix in the next iteration of the loop.
You can fix this by setting the stroke color explicitly to transparent, or by not calling stroke.
[color set];
[[NSColor clearColor] setStroke];
or
[path fill];
// not [path stroke];
Good day to all.
At the moment I am trying to implement CCLabelTTF subclass with suppport of NSAttributedString to get multi-colored label. And I am hampered by lack of CoreText and CoreGraphics knowledge.
After reading few guides I, created CCTexture2D category to create texture using NSAttributedString object.
Here is my drawing code:
data = calloc(POTHigh, POTWide * 2);
colorSpace = CGColorSpaceCreateDeviceGray();
context = CGBitmapContextCreate(data, POTWide, POTHigh, 8, POTWide, colorSpace, kCGImageAlphaNone);
CGColorSpaceRelease(colorSpace);
if( ! context )
{
free(data);
[self release];
return nil;
}
UIGraphicsPushContext(context);
CGContextTranslateCTM(context, 0.0f, POTHigh);
CGContextScaleCTM(context, 1.0f, -1.0f);
// draw attributed string to context
CTFramesetterRef frameSetter = CTFramesetterCreateWithAttributedString((CFAttributedStringRef)string);
CGMutablePathRef path = CGPathCreateMutable();
CGPathAddRect(path, NULL, CGRectMake(0.f, 0.f, dimensions.width, dimensions.height));
CTFrameRef frame = CTFramesetterCreateFrame(frameSetter, CFRangeMake(0, 0), path, NULL);
CTFrameDraw(frame, context);
UIGraphicsPopContext();
CFRelease(frame);
CGPathRelease(path);
CFRelease(frameSetter);
And now I have few troubles:
The first one - my texture is shown flipped vertically. I thought, that these lines
CGContextTranslateCTM(context, 0.0f, POTHigh);
CGContextScaleCTM(context, 1.0f, -1.0f);
should prevent this.
The second one, if I create RGB context, I cannot see anything on the screen. I tried to create RGB context with these lines.
colorSpace = CGColorSpaceCreateDeviceRGB();
context = CGBitmapContextCreate(data, POTWide, POTHigh, 8, POTWide * 4, colorSpace, kCGImageAlphaPremultipliedFirst | kCGBitmapByteOrder32Big);
I tried to google, but don't find anything related to my issues =( Any help(links or suggestions) is appreciated.
Couple things to try:
Your data allocation isn't big enough for RGB. Try: data = calloc(POTHigh, POTWide * 4); for RGB color space.
CTFrameDraw draws in relation to GL coords so you don't need to use CGContextScaleCTM(context, 1.0f, -1.0f);
that line was put in the original CCTexture2D creation for a CCLabelTTF because it used NSString's drawInRect: which draws in relation to UIKit coords.
Maybe try other alpha mask flags...? Check out Apple's documentation on Supported Pixel Formats for iOS to see what your options are.
You may want to take a look at ActiveTextView-iOS (https://github.com/storify/ActiveTextView-iOS). It may be of use.
use this to get color texture:
context = CGBitmapContextCreate(data, POTWide, POTHigh, 8, POTWide, colorSpace, kCGImageAlphaPremultipliedLast);
I am working on paint app [taking reference from GLPaint app] for iPhone and iPad. In this app I am filling colors in paint-images by drawings lines onscreen based on where the user touches. App working properly for iPhone. In iPad without zooming lines on the paint view are proper [no pixel distortion] but after zooming lines on the paintView has distorted pixels i.e Content of OpenGL ES is not High Resolution.
I am using Following code for initialize paint view:
-(id)initWithCoder:(NSCoder*)coder {
CGImageRef brushImage;
CGContextRef brushContext;
GLubyte *brushData;
size_t width, height;
CGFloat components[3];
if ((self = [super initWithCoder:coder])) {
CAEAGLLayer *eaglLayer = (CAEAGLLayer *)self.layer;
eaglLayer.opaque = NO;
eaglLayer.drawableProperties = [NSDictionary dictionaryWithObjectsAndKeys:[NSNumber numberWithBool:YES], kEAGLDrawablePropertyRetainedBacking, kEAGLColorFormatRGBA8, kEAGLDrawablePropertyColorFormat, nil];
context = [[EAGLContext alloc] initWithAPI:kEAGLRenderingAPIOpenGLES1];
if (!context || ![EAGLContext setCurrentContext:context]) {
return nil;
}
if(UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)
{
brushImage = [UIImage imageNamed:#"circle 64.png"].CGImage;
}
else {
brushImage = [UIImage imageNamed:#"flower 128.png"].CGImage;
}
// Get the width and height of the image
width = CGImageGetWidth(brushImage) ;
height = CGImageGetHeight(brushImage) ;
if(brushImage) {
// Allocate memory needed for the bitmap context
brushData = (GLubyte *) calloc(width * height * 4, sizeof(GLubyte));
// Use the bitmatp creation function provided by the Core Graphics framework.
brushContext = CGBitmapContextCreate(brushData, width, height, 8, width * 4, CGImageGetColorSpace(brushImage), kCGImageAlphaPremultipliedLast);
// After you create the context, you can draw the image to the context.
CGContextDrawImage(brushContext, CGRectMake(0.0, 0.0, (CGFloat)width, (CGFloat)height), brushImage);
// You don't need the context at this point, so you need to release it to avoid memory leaks.
CGContextRelease(brushContext);
// Use OpenGL ES to generate a name for the texture.
glGenTextures(1, &brushTexture);
// Bind the texture name.
glBindTexture(GL_TEXTURE_2D, brushTexture);
// Set the texture parameters to use a minifying filter and a linear filer (weighted average)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
// Specify a 2D texture image, providing the a pointer to the image data in memory
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, brushData);
// Release the image data; it's no longer needed
free(brushData);
}
CGFloat scale;
if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)
{
NSLog(#"IPAd");
self.contentScaleFactor=1.0;
scale = self.contentScaleFactor;
}
else {
// NSLog(#"IPHone");
self.contentScaleFactor=2.0;
}
//scale = 2.000000;
// Setup OpenGL states
glMatrixMode(GL_PROJECTION);
CGRect frame = self.bounds;
NSLog(#"Scale %f", scale);
glOrthof(0, (frame.size.width) * scale, 0, (frame.size.height) * scale, -1, 1);
glViewport(0, 0, (frame.size.width) * scale, (frame.size.height) * scale);
glMatrixMode(GL_MODELVIEW);
glDisable(GL_DITHER);
glEnable(GL_BLEND);
glEnable(GL_TEXTURE_2D);
glEnableClientState(GL_VERTEX_ARRAY);
glEnable(GL_BLEND);
// Set a blending function appropriate for premultiplied alpha pixel data
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_POINT_SPRITE_OES);
glTexEnvf(GL_POINT_SPRITE_OES, GL_COORD_REPLACE_OES, GL_TRUE);
glPointSize(width / kBrushScale);
// Make sure to start with a cleared buffer
needsErase = YES;
// Define a starting color
HSL2RGB((CGFloat) 0.0 / (CGFloat)kPaletteSize, kSaturation, kLuminosity, &components[0], &components[1], &components[2]);
[self setBrushColorWithRed:245.0f green:245.0f blue:0.0f];
boolEraser=NO;
}
return self;
}
TO CREATE FRAME BUFFER
-(BOOL)createFramebuffer {
// Generate IDs for a framebuffer object and a color renderbuffer
glGenFramebuffersOES(1, &viewFramebuffer);
glGenRenderbuffersOES(1, &viewRenderbuffer);
glBindFramebufferOES(GL_FRAMEBUFFER_OES, viewFramebuffer);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, viewRenderbuffer);
// This call associates the storage for the current render buffer with the EAGLDrawable (our CAEAGLLayer)
// allowing us to draw into a buffer that will later be rendered to screen wherever the layer is (which corresponds with our view).
[context renderbufferStorage:GL_RENDERBUFFER_OES fromDrawable:(id<EAGLDrawable>)self.layer];
glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES, GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, viewRenderbuffer);
// Get the size of the backing CAEAGLLayer
glGetRenderbufferParameterivOES(GL_RENDERBUFFER_OES, GL_RENDERBUFFER_WIDTH_OES, &backingWidth);
glGetRenderbufferParameterivOES(GL_RENDERBUFFER_OES, GL_RENDERBUFFER_HEIGHT_OES, &backingHeight);
// For this sample, we also need a depth buffer, so we'll create and attach one via another renderbuffer.
glGenRenderbuffersOES(1, &depthRenderbuffer);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, depthRenderbuffer);
glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_DEPTH_COMPONENT16_OES, backingWidth, backingHeight);
glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES, GL_DEPTH_ATTACHMENT_OES, GL_RENDERBUFFER_OES, depthRenderbuffer);
if (glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES) != GL_FRAMEBUFFER_COMPLETE_OES)
{
NSLog(#"failed to make complete framebuffer object %x", glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES));
return NO;
}
return YES;
}
Line Drawn using Following code
-(void)renderLineFromPoint:(CGPoint)start toPoint:(CGPoint)end {
static GLfloat* vertexBuffer = NULL;
static NSUInteger vertexMax = 64;
NSUInteger vertexCount = 0,
count,
i;
[EAGLContext setCurrentContext:context];
glBindFramebufferOES(GL_FRAMEBUFFER_OES, viewFramebuffer);
// Convert locations from Points to Pixels
//CGFloat scale = self.contentScaleFactor;
CGFloat scale;
scale=self.contentScaleFactor;
NSLog(#"Scale %f",scale);
start.x *= scale;
start.y *= scale;
end.x *= scale;
end.y *= scale;
float dx = end.x - start.x;
float dy = end.y - start.y;
float dist = (sqrtf(dx * dx + dy * dy)/ kBrushPixelStep);
// Allocate vertex array buffer
if(vertexBuffer == NULL)
// vertexBuffer = malloc(vertexMax * 2 * sizeof(GLfloat));
vertexBuffer = malloc(vertexMax * 2 * sizeof(GLfloat));
count = MAX(ceilf(dist), 1);
//NSLog(#"count %d",count);
for(i = 0; i < count; ++i) {
if (vertexCount == vertexMax) {
vertexMax = 2 * vertexMax;
vertexBuffer = realloc(vertexBuffer, vertexMax * 2 * sizeof(GLfloat));
// NSLog(#"if loop");
}
vertexBuffer[2 * vertexCount + 0] = start.x + (dx) * ((GLfloat)i / (GLfloat)count);
vertexBuffer[2 * vertexCount + 1] = start.y + (dy) * ((GLfloat)i / (GLfloat)count);
vertexCount += 1;
}
// Render the vertex array
glVertexPointer(2, GL_FLOAT, 0, vertexBuffer);
glDrawArrays(GL_POINTS, 0, vertexCount);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, viewRenderbuffer);
[context presentRenderbuffer:GL_RENDERBUFFER_OES];
}
For ipad device content of paint view is proper- high resolution for normal view but after zooming I am not getting High resolution content of paint view pixel of the lines looks distorted.
I have tried to change ContentScaleFactor as well as scale parameter of above code to see the difference but nothing worked as expected. IPad supports contentScaleFactor of 1.0 & 1.5, when I set contentScaleFactor = 2 Paint view can not display line it shows weird dotted lines.
Is there any way to make contents of OpenGL es high resolution?
The short answer is YES, you can have "High resolution" Content.
But you will have to clearly understand the issue before solving it. This is the long answer :
The brushes you use have a specific size (64 or 128). As soon as your virtual paper (the area in which you draw) will display its pixels larger than 1 screen pixel, you will start to see the "distortion". For example, in your favorite picture viewer, if you open one of your brush and zoom in the picture will also be distorted. You cannot avoid that, unless using vertor-brushes (with is not the scope of this answer and is far more complicated).
The quickest way would be to use more detailled brushes, but it is a fudge as if you zoom enought, the texture will look distorted as well.
You can also add a magnification filter using glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); . You used MIN in your sample, add this one will smooth the textures
i am not sure what you mean by high resolution. opengl is a vector library with a bitmap backed rendering system. the backing store will have the size in pixels (multiplied by the content scale factor) of the layer you are using to create the renderbuffer in:
- (BOOL)renderbufferStorage:(NSUInteger)target fromDrawable:(id<EAGLDrawable>)drawable
once it is created there is no way to change the resolution, nor would it make sense to do so generally, one renderbuffer pixel per screen pixel makes the most sense.
it is hard to know exactly what problem you are trying to solve without knowing what zooming you are talking about. i assume you have set up a CAEAGLLayer in a UIScrollView, and you are seeing pixel artifacts. this is inevitable, how else could it work?
if you want your lines to be smooth, you need to implement them using triangle strip meshes with alpha blending at the edges, which will provide antialiasing. instead of zooming the layer itself, you would simply "zoom" the contents by scaling the vertices, but keeping the CAEAGLLayer the same size. this would eliminate pixelation and give purdy alpha blended edges.
I've finally got my main app release (Tap Play MMO - check it out ;-) ) and I'm now working on expanding it.
To do this I need to have a circle that has four seperate buttons in it, these buttons will essentially be quarters. I've come to the conclusion that the circlular image will need to be constructed of four images, one for each quarter, but due to the necessity of rectangular image shapes I'm going to end up with some overlap, although the overlap will be transparent.
What's the best way of getting this to work? I need something really simple really, I've looked at this
http://iphonedevelopment.blogspot.com/2010/03/irregularly-shaped-uibuttons.html
Before but not yet succeeded in getting it to work. Anyone able to offer some advice?
In case it makes any difference I'll be deploying to a iOS 3.X framework (will be 4.2 down the line when 4.2 comes out for iPad)
Skip the buttons and simply respond to touches in your view that contains the circle.
Create a CGPath for each area that you want to capture touches, when your UIview receives a touch, check for membership inside the paths.
[Edited answer to show skeleton implementation details -- TomH]
Here's how I would approach the problem: (I haven't tested this code and the syntax may not be quite right, but this is the general idea)
1) Using PS or your favorite image creation application, create one png of the quarter circles. Add it to your XCode project.
2) Add a UIView to the UI. Set the UIView's layer's contents to the png.
self.myView = [[UIView alloc] initWithRect:CGRectMake(10.0, 10.0, 100.0, 100,0)];
[myView.layer setContents:(id)[UIImage loadImageNamed:#"my.png"]];
3) Create CGPaths that describe the region in the UIView that you are interested in.
self.quadrantOnePath = CGPathCreateMutable();
CGPathMoveToPoint(self.quadrantOnePath, NULL, 50.0, 50.0);
CGPathAddLineToPoint(self.quadrantOnePath, NULL, 100.0, 50.0);
CGPathAddArc(self.quadrantOnePath, NULL, 50.0, 50.0, 50.0, 0.0, M_PI2, 1);
CGPathCloseSubpath(self.quadrantOnePath);
// create paths for the other 3 circle quadrants too!
4) Add a UIGestureRecognizer and listen/observe for taps in the view
UITapGestureRecognizer *tapRecognizer = [[UITapGestureRecognizer alloc] initWithTarget:self action:#selector(handleGesture:)];
[tapRecognizer setNumberOfTapsRequired:2]; // default is 1
5) When tapRecognizer invokes its target selector
- (void)handleGesture:(UIGestureRecognizer *) recognizer {
CGPoint touchPoint = [recognizer locationOfTouch:0 inView:self.myView];
bool processTouch = CGPathContainsPoint(self.quadrantOnePath, NULL, touchPoint, true);
if(processTouch) {
// call your method to process the touch
}
}
Don't forget to release everything when appropriate -- use CGPathRelease to release paths.
Another thought: If the graphic that you are using to represent your circle quadrants is simply a filled color (i.e. no fancy graphics, layer effects, etc.), you could also use the paths you created in the UIView's drawRect method to draw the quadrants too. This would address one of the failings of the approach above: there isn't a tight integration between the graphic and the paths used to check for the touches. That is, if you swap out the graphic for something different, change the size of the graphic, etc., your paths used to check for touches will be out of sync. Potentially a high maintenance piece of code.
I can't see, why overlapping is needed.
Just create 4 buttons and give each one a slice of your image.
edit after comment
see this great project. One example is exactly what you want to do.
It works by incorporating the alpha-value of a pixel in the overwritten
pointInside:withEvent: and a category on UIImage, that adds this method
- (UIColor *)colorAtPixel:(CGPoint)point {
// Cancel if point is outside image coordinates
if (!CGRectContainsPoint(CGRectMake(0.0f, 0.0f, self.size.width, self.size.height), point)) {
return nil;
}
// Create a 1x1 pixel byte array and bitmap context to draw the pixel into.
// Reference: http://stackoverflow.com/questions/1042830/retrieving-a-pixel-alpha-value-for-a-uiimage
NSInteger pointX = trunc(point.x);
NSInteger pointY = trunc(point.y);
CGImageRef cgImage = self.CGImage;
NSUInteger width = self.size.width;
NSUInteger height = self.size.height;
CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
int bytesPerPixel = 4;
int bytesPerRow = bytesPerPixel * 1;
NSUInteger bitsPerComponent = 8;
unsigned char pixelData[4] = { 0, 0, 0, 0 };
CGContextRef context = CGBitmapContextCreate(pixelData,
1,
1,
bitsPerComponent,
bytesPerRow,
colorSpace,
kCGImageAlphaPremultipliedLast | kCGBitmapByteOrder32Big);
CGColorSpaceRelease(colorSpace);
CGContextSetBlendMode(context, kCGBlendModeCopy);
// Draw the pixel we are interested in onto the bitmap context
CGContextTranslateCTM(context, -pointX, pointY-(CGFloat)height);
CGContextDrawImage(context, CGRectMake(0.0f, 0.0f, (CGFloat)width, (CGFloat)height), cgImage);
CGContextRelease(context);
// Convert color values [0..255] to floats [0.0..1.0]
CGFloat red = (CGFloat)pixelData[0] / 255.0f;
CGFloat green = (CGFloat)pixelData[1] / 255.0f;
CGFloat blue = (CGFloat)pixelData[2] / 255.0f;
CGFloat alpha = (CGFloat)pixelData[3] / 255.0f;
return [UIColor colorWithRed:red green:green blue:blue alpha:alpha];
}
Here's an awesome project that solves the problem of irregular shaped buttons so easily:
http://christinemorris.com/2011/06/ios-irregular-shaped-buttons/