I'm building an emotion recognition system for chat applications. In that the core part is finding the verb in the user entered text, which can be done with a part-of-speech tagger.
Is it possible to build a part-of-speech tagger with Lucene? If not, what is a good open-source/libre software package or system I can use?
From Lucene you would probably want to use Mahout. I've used Mahout's Bayes classifier for sentiment analysis from Lucene, which worked fairly well and was relatively easy to set up. I think the major benefit of Mahout+Lucene vs. anything else would be that it scales better.
There are tons of open source frameworks to do this with if you don't like Mahout. I've found NLTK to be very user friendly, for example, although I don't think it integrates with Lucene very well.
Related
I'm new to the Machine-Learning (AI) technology. I'm developing a messenger app for Android/IOs where I would like to recommend the users based on the texts/word/conversation a product from a relative small product portfolio.
Example 1:
In case the user of the messenger writes a sentence including the words "vine", "dinner", "date" the AI should recommend a bottle of vine to the user.
Example 2:
In case the user of the app writes that he has drunk a good coffee this morning, the AI should recommend a mug to the user.
Example 3:
In case the user writes something about a cute boy she met last day, the AI should recommend a "teddy bear" to the user.
I'm a Software Developer since almost 20 year with experience in the development of C/C++/Java based application (Android and IOs apps) as well as some experience in Google Cloud Platform. The ML/AI technology is completely new to me. Okay, I know the basics (input data is needed to train the ML/AI system etc.), but I wonder If there is already a framework which could help me to develop such a system which solves the above described uses-case.
I would appreciate it, if you could give me some hints where and how to start.
Thank you and regards
It is definitely possible to implement such an application, in case you want to do it in Google Cloud you will need some understanding of Tensorflow.
First of all, I recommend to you to do the Machine Learning Crash Course, for a good introduction to Machine Learning and to start to familiarize yourself with TensorFlow. Afterwards I recommend to take a look into Tensorflow tutorials which will give you a more practical introduction to Tensorflow, and include various examples on building/training/testing models.
Once you are famirialized with Tensorflow, you can jump into learning how to run jobs in the Machine Learning engine, you can start by following the quickstart. The documentation includes detailed guides on how to use the ml-engine, plus multiple samples and tutorials.
Since I believe that your application would fall into the Recommender System type, here you can see an example model, in Google Cloud ML Engine, on how to recommend items to users based on his previous searches. In your case, you would have to build a model in order to recommend items to users based on his previous words in the sentence.
The second option, in case you don't want to go through the hassle of building a new model from scratch, would be to use the Google Cloud Natural Language API, which you can understand as pre-trained models using Google (incredibly big) data. In your case, I believe that the Content Classifying API would help you achieve what your application intends to do, however, the outputs (which you can see here) are limited to what the model was trained to do, and might not be specific enough for your application, however it is an easy solution and you can still profit of this API in order to extract labels/information and send it as input to another model.
I hope that these links provide you with some foundations on what is possible to do with Tensorflow in the ML Engine, and are useful to you.
There are a lot of programs that do parameter learning for Bayes nets. I am having a hard time finding libraries or tools that do (or try to do) structure learning. Specifically, one that uses an information theoretic approach, by looking at the information gain from adding an edge, or analyzing the cross entropy across Random Variables to determine if they have any relationships or are independent. This is not the core problem I am trying to work on, but learning structure is an important part of it. So finding an existing tool/library would help immensely.
Try the bnlearn library. It contains structure learning, parameter learning, inference and various well-known example datasets such as Sprinkler, Asia, Alarm.
Github documentation pages
Examples can be found here
Blog about detecting causal relationships can be found here.
I'm looking into designing a software platform that will aid linguists and anthropologists in their study of previously unstudied languages. Statistics show that around 1,000 languages exist that have never been studied by a person outside of their respective speaker groups.
My goal is to utilize TensorFlow to make a platform that will allow linguists to study and document these languages more efficiently, and to help them create written systems for the ones that don't have a written system already. One of their current methods of accomplishing such a task is three-fold: 1) Record a native speaker conversing in the language, 2) Listening to that recording and trying to transcribe it into the IPA, 3) From the phonetics, analyzing the phonemics and phonotactics of the language to eventually create a written system for the speaker.
My proposed platform would cut that research time down from a minimum of a year to a maximum of six months. Before I start, I have some questions...
What would be required to train TensorFlow to transcribe live audio into the IPA? Has this already been done? and if so, how would I utilize a previous solution for this project? Is a project like this even possible with TensorFlow? if not, what would you recommend using instead?
My apologies for the magnitude of this question. I don't have much experience in the realm of machine learning, as I am just beginning the research process for this project. Any help is appreciated!
I guess I will take a first shot at answering this. Since the question is pretty general, my answer will have to be pretty general as well.
What would be required. At the very least you would have to have a large dataset of pre-transcribed data. Ideally a large amount of spoken language audio mapped to characters in the phonetic alphabet, so the system could learn the sound of individual characters rather than whole transcribed words. If such a dataset doesn't exist, a less granular dataset could be used, mapping single words to their transcriptions. Then you would need a model, that is the actual neural network architecture implemented in code. And lastly you would need some computing resources. This is not something you can train casually, you would either have to buy some time in a cloud based machine learning framework (like Google Cloud ML) or build a fairly expensive machine to train at home.
Has this been done? I don't know. I don't think so. There have been published papers reporting various degrees of success at training systems to transcribe speech. Here is one, for example, http://deeplearning.stanford.edu/lexfree/lexfree.pdf It seems that since the alphabet you want to transcribe to is specifically designed to capture the way words sound rather than just write down the words you might have more success at training such a model.
Is it possible with TensorFlow. Yes, most likely. TensorFlow is well suited for implementing most modern deep learning architectures. Unless you end up designing some really weird and very original model for this purpose, TensorFlow should work just fine.
Edit: after some thought in part 1, you would have to use a dataset mapping spoken words to their transcriptions, since I expect that the same sound pronounced separately would be different from when the same sound is used in a word.
This has actually been done, albeit in PyTorch, by a group at CMU: https://github.com/xinjli/allosaurus
I have been playing around with building some deep learning models in Python and now I have a couple of outcomes I would like to be able to show friends and family.
Unfortunately(?), most of my friends and family aren't really up to the task of installing any of the advanced frameworks that are more or less necessary to have when creating these networks, so I can't just send them my scripts in the present state and hope to have them run.
But then again, I have already created the nets, and just using the finished product is considerably less demanding than making it. We don't need advanced graph compilers or GPU compute powers for the show and tell. We just need the ability to make a few matrix multiplications.
"Just" being a weasel word, regrettably. What I would like to do is convert the the whole model (connectivity,functions and parameters) to a model expressed in e.g. regular Numpy (which, though not part of standard library, is both much easier to install and easier to bundle reliably with a script)
I fail to find any ready solutions to do this. (I find it difficult to pick specific keywords on it for a search engine). But it seems to me that I can't be the first guy who wants to use a ready-made deep learning model on a lower-spec machine operated by people who aren't necessarily inclined to spend months learning how to set the parameters in an artificial neural network.
Are there established ways of transferring a model from e.g. Theano to Numpy?
I'm not necessarily requesting those specific libraries. The main point is I want to go from a GPU-capable framework in the creation phase to one that is trivial to install or bundle in the usage phase, to alleviate or eliminate the threshold the dependencies create for users without extensive technical experience.
An interesting option for you would be to deploy your project to heroku, like explained on this page:
https://github.com/sugyan/tensorflow-mnist
I need a tool that compute the semantic relatedness between two words.Please, Have you an idea about a tool or a code source which adopts this process. I am trying wordnet similarity (http://maraca.d.umn.edu/cgi-bin/similarity/similarity.cgi), but there is several missing words, i need one richer in term of concept.
What you described is more like a research project. :-)
If they are just words, not phrases, the most recent technology is word embedding. You can think of it as converting words to high-dimensional vectors (from 200 to 1000 dimensions) by training on millions of documents.
https://code.google.com/archive/p/word2vec
The code has been archived for proprietary issues but you can still download and run for yourself. Good luck.