How to understand the big picture in a loose coupled application? - oop

We have been developing code using loose coupling and dependency injection.
A lot of "service" style classes have a constructor and one method that implements an interface. Each individual class is very easy to understand in isolation.
However, because of the looseness of the coupling, looking at a class tells you nothing about the classes around it or where it fits in the larger picture.
It's not easy to jump to collaborators using Eclipse because you have to go via the interfaces. If the interface is Runnable, that is no help in finding which class is actually plugged in. Really it's necessary to go back to the DI container definition and try to figure things out from there.
Here's a line of code from a dependency injected service class:-
// myExpiryCutoffDateService was injected,
Date cutoff = myExpiryCutoffDateService.get();
Coupling here is as loose as can be. The expiry date be implemented literally in any manner.
Here's what it might look like in a more coupled application.
ExpiryDateService = new ExpiryDateService();
Date cutoff = getCutoffDate( databaseConnection, paymentInstrument );
From the tightly coupled version, I can infer that the cutoff date is somehow determined from the payment instrument using a database connection.
I'm finding code of the first style harder to understand than code of the second style.
You might argue that when reading this class, I don't need to know how the cutoff date is figured out. That's true, but if I'm narrowing in on a bug or working out where an enhancement needs to slot in, that is useful information to know.
Is anyone else experiencing this problem? What solutions have you? Is this just something to adjust to? Are there any tools to allow visualisation of the way classes are wired together? Should I make the classes bigger or more coupled?
(Have deliberately left this question container-agnostic as I'm interested in answers for any).

While I don't know how to answer this question in a single paragraph, I attempted to answer it in a blog post instead: http://blog.ploeh.dk/2012/02/02/LooseCouplingAndTheBigPicture.aspx
To summarize, I find that the most important points are:
Understanding a loosely coupled code base requires a different mindset. While it's harder to 'jump to collaborators' it should also be more or less irrelevant.
Loose coupling is all about understanding a part without understanding the whole. You should rarely need to understand it all at the same time.
When zeroing in on a bug, you should rely on stack traces rather than the static structure of the code in order to learn about collaborators.
It's the responsibility of the developers writing the code to make sure that it's easy to understand - it's not the responsibility of the developer reading the code.

Some tools are aware of DI frameworks and know how to resolve dependencies, allowing you to navigate your code in a natural way. But when that isn't available, you just have to use whatever features your IDE provides as best you can.
I use Visual Studio and a custom-made framework, so the problem you describe is my life. In Visual Studio, SHIFT+F12 is my friend. It shows all references to the symbol under the cursor. After a while you get used to the necessarily non-linear navigation through your code, and it becomes second-nature to think in terms of "which class implements this interface" and "where is the injection/configuration site so I can see which class is being used to satisfy this interface dependency".
There are also extensions available for VS which provide UI enhancements to help with this, such as Productivity Power Tools. For instance, you can hover over an interface, a info box will pop up, and you can click "Implemented By" to see all the classes in your solution implementing that interface. You can double-click to jump to the definition of any of those classes. (I still usually just use SHIFT+F12 anyway).

I just had an internal discussion about this, and ended up writing this piece, which I think is too good not to share. I'm copying it here (almost) unedited, but even though it's part of a bigger internal discussion, I think most of it can stand alone.
The discussion is about introduction of a custom interface called IPurchaseReceiptService, and whether or not it should be replaced with use of IObserver<T>.
Well, I can't say that I have strong data points about any of this - it's just some theories that I'm pursuing... However, my theory about cognitive overhead at the moment goes something like this: consider your special IPurchaseReceiptService:
public interface IPurchaseReceiptService
{
void SendReceipt(string transactionId, string userGuid);
}
If we keep it as the Header Interface it currently is, it only has that single SendReceipt method. That's cool.
What's not so cool is that you had to come up with a name for the interface, and another name for the method. There's a bit of overlap between the two: the word Receipt appears twice. IME, sometimes that overlap can be even more pronounced.
Furthermore, the name of the interface is IPurchaseReceiptService, which isn't particularly helpful either. The Service suffix is essentially the new Manager, and is, IMO, a design smell.
Additionally, not only did you have to name the interface and the method, but you also have to name the variable when you use it:
public EvoNotifyController(
ICreditCardService creditCardService,
IPurchaseReceiptService purchaseReceiptService,
EvoCipher cipher
)
At this point, you've essentially said the same thing thrice. This is, according to my theory, cognitive overhead, and a smell that the design could and should be simpler.
Now, contrast this to use of a well-known interface like IObserver<T>:
public EvoNotifyController(
ICreditCardService creditCardService,
IObserver<TransactionInfo> purchaseReceiptService,
EvoCipher cipher
)
This enables you to get rid of the bureaucracy and reduce the design the the heart of the matter. You still have intention-revealing naming - you only shift the design from a Type Name Role Hint to an Argument Name Role Hint.
When it comes to the discussion about 'disconnectedness', I'm under no illusion that use of IObserver<T> will magically make this problem go away, but I have another theory about this.
My theory is that the reason many programmers find programming to interfaces so difficult is exactly because they are used to Visual Studio's Go to definition feature (incidentally, this is yet another example of how tooling rots the mind). These programmers are perpetually in a state of mind where they need to know what's 'on the other side of an interface'. Why is this? Could it be because the abstraction is poor?
This ties back to the RAP, because if you confirm programmers' belief that there's a single, particular implementation behind every interface, it's no wonder they think that interfaces are only in the way.
However, if you apply the RAP, I hope that slowly, programmers will learn that behind a particular interface, there may be any implementation of that interface, and their client code must be able to handle any implementation of that interface without changing the correctness of the system. If this theory holds, we've just introduced the Liskov Substitution Principle into a code base without scaring anyone with high-brow concepts they don't understand :)

However, because of the looseness of the coupling, looking at a class
tells you nothing about the classes around it or where it fits in the
larger picture.
This is not accurate.For each class you know exactly what kind of objects the class depends on, to be able to provide its functionality at runtime.
You know them since you know that what objects are expected to be injected.
What you don't know is the actual concrete class that will be injected at runtime which will implement the interface or base class that you know your class(es) depend on.
So if you want to see what is the actual class injected, you just have to look at the configuration file for that class to see the concrete classes that are injected.
You could also use facilities provided by your IDE.
Since you refer to Eclipse then Spring has a plugin for it, and has also a visual tab displaying the beans you configure. Did you check that? Isn't it what you are looking for?
Also check out the same discussion in Spring Forum
UPDATE:
Reading your question again, I don't think that this is a real question.
I mean this in the following manner.
Like all things loose coupling is not a panacea and has its own disadvantages per se.
Most tend to focus on the benefits but as any solution it has its disadvantages.
What you do in your question is describe one of its main disadvantages which is that it indeed is not easy to see the big picture since you have everything configurable and plugged in by anything.
There are other drawbacks as well that one could complaint e.g. that it is slower than tight coupled applications and still be true.
In any case, re-iterating, what you describe in your question is not a problem you stepped upon and can find a standard solution (or any for that manner).
It is one of the drawbacks of loose coupling and you have to decide if this cost is higher than what you actually gain by it, like in any design-decision trade off.
It is like asking:
Hey I am using this pattern named Singleton. It works great but I can't create new objects!How can I get arround this problem guys????
Well you can't; but if you need to, perhaps singleton is not for you....

One thing that helped me is placing multiple closely related classes in the same file. I know this goes against the general advice (of having 1 class per file) and I generally agree with this, but in my application architecture it works very well. Below I will try to explain in which case this is.
The architecture of my business layer is designed around the concept of business commands. Command classes (simple DTO with only data and no behavior) are defined and for each command there is a 'command handler' that contains the business logic to execute this command. Each command handler implements the generic ICommandHandler<TCommand> interface, where TCommand is the actual business command.
Consumers take a dependency on the ICommandHandler<TCommand> and create new command instances and use the injected handler to execute those commands. This looks like this:
public class Consumer
{
private ICommandHandler<CustomerMovedCommand> handler;
public Consumer(ICommandHandler<CustomerMovedCommand> h)
{
this.handler = h;
}
public void MoveCustomer(int customerId, Address address)
{
var command = new CustomerMovedCommand();
command.CustomerId = customerId;
command.NewAddress = address;
this.handler.Handle(command);
}
}
Now consumers only depend on a specific ICommandHandler<TCommand> and have no notion of the actual implementation (as it should be). However, although the Consumer should know nothing about the implementation, during development I (as a developer) am very much interested in the actual business logic that is executed, simply because development is done in vertical slices; meaning that I'm often working on both the UI and business logic of a simple feature. This means I'm often switching between business logic and UI logic.
So what I did was putting the command (in this example the CustomerMovedCommand and the implementation of ICommandHandler<CustomerMovedCommand>) in the same file, with the command first. Because the command itself is concrete (since its a DTO there is no reason to abstract it) jumping to the class is easy (F12 in Visual Studio). By placing the handler next to the command, jumping to the command means also jumping to the business logic.
Of course this only works when it is okay for the command and handler to be living in the same assembly. When your commands need to be deployed separately (for instance when reusing them in a client/server scenario), this will not work.
Of course this is just 45% of my business layer. Another big peace however (say 45%) are the queries and they are designed similarly, using a query class and a query handler. These two classes are also placed in the same file which -again- allows me to navigate quickly to the business logic.
Because the commands and queries are about 90% of my business layer, I can in most cases move very quickly from presentation layer to business layer and even navigate easily within the business layer.
I must say these are the only two cases that I place multiple classes in the same file, but makes navigation a lot easier.
If you want to learn more about how I designed this, I've written two articles about this:
Meanwhile... on the command side of my architecture
Meanwhile... on the query side of my architecture

In my opinion, loosely coupled code can help you much but I agree with you about the readability of it.
The real problem is that name of methods also should convey valuable information.
That is the Intention-Revealing Interface principle as stated by
Domain Driven Design ( http://domaindrivendesign.org/node/113 ).
You could rename get method:
// intention revealing name
Date cutoff = myExpiryCutoffDateService.calculateFromPayment();
I suggest you to read thoroughly about DDD principles and your code could turn much more readable and thus manageable.

I have found The Brain to be useful in development as a node mapping tool. If you write some scripts to parse your source into XML The Brain accepts, you could browse your system easily.
The secret sauce is to put guids in your code comments on each element you want to track, then the nodes in The Brain can be clicked to take you to that guid in your IDE.

Depending on how many developers are working on projects and whether you want to reuse some parts of it in different projects loose coupling can help you a lot. If your team is big and project needs to span several years, having loose coupling can help as work can be assigned to different groups of developers more easily. I use Spring/Java with lots of DI and Eclipse offers some graphs to display dependencies. Using F3 to open class under cursor helps a lot. As stated in previous posts, knowing shortcuts for your tool will help you.
One other thing to consider is creating custom classes or wrappers as they are more easily tracked than common classes that you already have (like Date).
If you use several modules or layer of application it can be a challenge to understand what a project flow is exactly, so you might need to create/use some custom tool to see how everything is related to each other. I have created this for myself, and it helped me to understand project structure more easily.

Documentation !
Yes, you named the major drawback of loose coupled code. And if you probably already realized that at the end, it will pay off, it's true that it will always be longer to find "where" to do your modifications, and you might have to open few files before finding "the right spot"...
But that's when something really important: the documentation. It's weird that no answer explicitly mentioned that, it's a MAJOR requirement in all big sized development.
API Documentation
An APIDoc with a good search feature. That each file and --almost-- each methods have a clear description.
"Big picture" documentation
I think it's good to have a wiki that explain the big picture. Bob have made a proxy system ? How doest it works ? Does it handle authentication ? What kind of component will use it ? Not a whole tutorial, but just a place when you can read 5 minutes, figure out what components are involved and how they are linked together.
I do agree with all the points of Mark Seemann answer, but when you get in a project for the first time(s), even if you understand well the principles behing decoupling, you'll either need a lot of guessing, or some sort of help to figure out where to implement a specific feature you want to develop.
... Again: APIDoc and a little developper Wiki.

I am astounded that nobody has written about the testability (in terms of unit testing of course) of the loose coupled code and the non-testability (in the same terms) of the tightly coupled design! It is no brainer which design you should choose. Today with all the Mock and Coverage frameworks it is obvious, well, at least for me.
Unless you do not do unit tests of your code or you think you do them but in fact you don't...
Testing in isolation can be barely achieved with tight coupling.
You think you have to navigate through all the dependencies from your IDE? Forget about it! It is the same situation as in case of compilation and runtime. Hardly any bug can be found during the compilation, you cannot be sure whether it works unless you test it, which means execute it. Want to know what is behind the interface? Put a breakpoint and run the goddamn application.
Amen.
...updated after the comment...
Not sure if it is going to serve you but in Eclipse there is something called hierarchy view. It shows you all the implementations of an interface within your project (not sure if the workspace as well). You can just navigate to the interface and press F4. Then it will show you all the concrete and abstract classes implementing the interface.

Related

Method JavaFx TreeItem getRoot() is not visible. What is the OOP/MVC reason it is not?

I needed to get the root item of a TreeView. The obvious way to get it is to use the getRoot() on the TreeView. Which I use.
I like to experiment, and was wondering if I can get same root, buy climbing up the tree from a leaf item (a TreeItem), using recursively getParent() until the result is NULL.
It is working as well, and, in my custom TreeItem, I added a public method 'getRoot()' to play around with it. Thus finding out this method does already exist in parent TreeItem, but is not exposed.
My question : Why would it not be exposed ? Is is a bad practice regarding OOP / MVC architecture ?
The reason for the design is summed up by kleopatra's comment:
Why would it not be exposed I would pose it the other way round: why should it? It's convenience api at best, easy to implement by clients, not really needed - adding such to a framework/toolkit tends to exploding api/implementation to maintain.
JavaFX is filled with decisions like this on purpose. A lot of the reasoning is based on experience (good and bad) from AWT/Spring. Just some examples:
For specifying execution on the UI thread, there is a runLater API, but no invokeAndWait API like Swing, even though it would be easy for the framework to provide such an API and it has been requested.
Providing an invokeAndWait API means that naive (and experienced :-) developers could use it incorrectly to accidentally deadlock threads.
Lots of classes are final and not extensible.
Sometimes developers want to extend classes, but can't because they are final. This means that they can't over-ride a lot of the built-in tested functionality of the framework and accidentally break it that way. Instead they can usually use aggregation over inheritance to do what they need. The framework forces them to do so in order to protect itself and them.
Color objects are immutable.
Immutable objects in general make stuff easier to maintain.
Native look and feels aren't part of the framework.
You can still create them if you want, and there are 3rd party libraries that do that, but it doesn't need to be in the core framework.
The application programming interface is single threaded not multi-threaded.
Because the developers of the framework realized that multi-threaded UI frameworks are a failed dream.
The philosophy was to code to make the 80% use case easier and the the 20% use case (usually) possible, using additional user or 3rd party code, while making it difficult for the user code to accidentally (or intentionally) break the framework. You just stumbled upon one instance of an application of this philosophy.
There are a whole host of catch-phrases that you could use to describe the reason for this design approach. None of them are OOP or MVC specific. The underlying principles have been around far longer than software engineering, they are just approaches towards work and engineering in general. Here are some links if interested:
You ain't going to need it YAGNI
Minimal viable product MVP
Worse-is-better
Muntzing
Feature creep prevention
Keep it simple stupid KISS
Occam's razor

Object oriented programming - subobject vs globals (use case)

I hope this a correct stack.
I am developing a nethack-like game, and I would like an advice how to approach the design part. For now I got class like Location, Npc, Item etc. But I ve got a problem how to easily access parts of location.
Lets say I have an object Door inside (not inheritated). If player is inside location it is easy to check whether door are opened. But on the other hand (I got this solution with my previous non-object implementation) I had a script that at 0600 opened all shops. But now I need to iterate thru all lcoations, check whethere are doors inside, and open them if location is a shop. Is it really optimized way to do it?
I could also do a globals (like singelton) with door states and fastly run thru those - but it would be hardly an OOP.
What are the possibilites here?
If this problem is somewhere covered please share link with me and that would surely be enough :)
Thanks!
Zaqqen
In my opinion, there is a difference between theoretical and practical OOP. If you want to learn the basis or make a thesis on OOP, theoretical could be fine. In most other cases you would prefer a practical one.
Why and how is it related to your question?
When I was a young developper, I had so much pain to rationalize my code. Shall I code the selling method in the class Product, Store or Consumer?
Then I discovered SOA, and I set my selling method in the class SaleHandler.
This is what you call a singleton. I prefer to implement it as a service with a framework helping me to make some dynamic dependency injection. From here, I had my data classes (Product, Store, ...) and my service classes (SaleHandler) to be fast. All my logic was coded in these services. This was not pure theoretical OOP but it helped me so much to handle the increasing complexity of growing applications.
I don't know how you can use this in your case, but I can give you some slope:
A service class DoorsRegistry containing all your doors (pattern registry).
A service class DoorOpener handling the opening of the doors.
If you do not use any framework helping you to do that you can implement your services as singletons but be aware that the pattern singleton is certainly an anti-pattern.
Hope this is the kind of answer you are waiting for.

How to design a business logic layer

To be perfectly clear, I do not expect a solution to this problem. A big part of figuring this out is obviously solving the problem. However, I don't have a lot of experience with well architected n-tier applications and I don't want to end up with an unruly BLL.
At the moment of writing this, our business logic is largely a intermingled ball of twine. An intergalactic mess of dependencies with the same identical business logic being replicated more than once. My focus right now is to pull the business logic out of the thing we refer to as a data access layer, so that I can define well known events that can be subscribed to. I think I want to support an event driven/reactive programming model.
My hope is that there's certain attainable goals that tell me how to design these collection of classes in a manner well suited for business logic. If there are things that differentiate a good BLL from a bad BLL I'd like to hear more about them.
As a seasoned programmer but fairly modest architect I ask my fellow community members for advice.
Edit 1:
So the validation logic goes into the business objects, but that means that the business objects need to communicate validation error/logic back to the GUI. That get's me thinking of implementing business operations as objects rather than objects to provide a lot more metadata about the necessities of an operation. I'm not a big fan of code cloning.
Kind of a broad question. Separate your DB from your business logic (horrible term) with ORM tech (NHibernate perhaps?). That let's you stay in OO land mostly (obviously) and you can mostly ignore the DB side of things from an architectural point of view.
Moving on, I find Domain Driven Design (DDD) to be the most successful method for breaking a complex system into manageable chunks, and although it gets no respect I genuinely find UML - especially action and class diagrams - to be critically useful in understanding and communicating system design.
General advice: Interface everything, build your unit tests from the start, and learn to recognise and separate the reusable service components that can exist as subsystems. FWIW if there's a bunch of you working on this I'd also agree on and aggressively use stylecop from the get go :)
I have found some o fthe practices of Domain Driven Design to be excellent when it comes to splitting up complex business logic into more managable/testable chunks.
Have a look through the sample code from the following link:
http://dddpds.codeplex.com/
DDD focuses on your Domain layer or BLL if you like, I hope it helps.
We're just talking about this from an architecture standpoint, and what remains as the gist of it is "abstraction, abstraction, abstraction".
You could use EBC to design top-down and pass the interface definitions to the programmer teams. Using a methology like this (or any other visualisation technique) visualizing the dependencies prevents you from duplicating business logic anywhere in your project.
Hmm, I can tell you the technique we used for a rather large database-centered application. We had one class which managed the datalayer as you suggested which had suffix DL. We had a program which automatically generated this source file (which was quite convenient), though it also meant if we wanted to extend functionality, you needed to derive the class since upon regeneration of the source you'd overwrite it.
We had another file end with OBJ which simply defined the actual database row handled by the datalayer.
And last but not least, with a well-formed base class there was a file ending in BS (standing for business logic) as the only file not generated automatically defining event methods such as "New" and "Save" such that by calling the base, the default action was done. Therefore, any deviation from the norm could be handled in this file (including complete rewrites of default functionality if necessary).
You should create a single group of such files for each table and its children (or grandchildren) tables which derive from that master table. You'll also need a factory which contains the full names of all objects so that any object can be created via reflection. So to patch the program, you'd merely have to derive from the base functionality and update a line in the database so that the factory creates that object rather than the default.
Hope that helps, though I'll leave this a community wiki response so perhaps you can get some more feedback on this suggestion.
Have a look in this thread. May give you some thoughts.
How should my business logic interact with my data layer?
This guide from Microsoft could also be helpful.
Regarding "Edit 1" - I've encountered exactly that problem many times. I agree with you completely: there are multiple places where the same validation must occur.
The way I've resolved it in the past is to encapsulate the validation rules somehow. Metadata/XML, separate objects, whatever. Just make sure it's something that can be requested from the business objects, taken somewhere else and executed there. That way, you're writing the validation code once, and it can be executed by your business objects or UI objects, or possibly even by third-party consumers of your code.
There is one caveat: some validation rules are easy to encapsulate/transport; "last name is a required field" for example. However, some of your validation rules may be too complex and involve far too many objects to be easily encapsulated or described in metadata: "user can include that coupon only if they aren't an employee, and the order is placed on labor day weekend, and they have between 2 and 5 items of this particular type in their cart, unless they also have these other items in their cart, but only if the color is one of our 'premiere sale' colors, except blah blah blah...." - you know how business 'logic' is! ;)
In those cases, I usually just accept the fact that there will be some additional validation done only at the business layer, and ensure there's a way for those errors to be propagated back to the UI layer when they occur (you're going to need that communication channel anyway, to report back persistence-layer errors anyway).

Compromising design & code quality to integrate with existing modules

Greetings!
I inherited a C#.NET application I have been extending and improving for a while now. Overall it was obviously a rush-job (or whoever wrote it was seemingly less competent than myself). The app pulls some data from an embedded device & displays and manipulates it. At the core is a communications thread in the main application form which executes a 600+ lines of code method which calls functions all over the place, implementing a state machine - lots of if-state-then-do type code. Interaction with the device is done by setting the state/mode globally and letting the thread do it's thing. (This is just one example of the badness of the code - overall it is not very OO-like, it reminds of the style of embedded C code the device firmware is written in).
My problem is that this piece of code is central to the application. The software, communications protocol or device firmware are not documented at all. Obviously to carry on with my work I have to interact with this code.
What I would like some guidance on, is whether it is worth scrapping this code & trying to piece together something more reasonable from the information I can reverse engineer? I can't decide! The reason I don't want to refactor is because the code already works, and changing it will surely be a long, laborious and unpleasant task. On the flip side, not refactoring means I have to sometimes compromise the design of other modules so that I may call my code from this state machine!
I've heard of "If it ain't broke don't fix it!", so I am wondering if it should apply when "it" is influencing the design of future code! Any advice would be appreciated!
Thanks!
Also, the longer you wait, the worse the codebase will smell. My suggestion would be first create a testsuite that you can evaluate your refactoring against. This makes it a lot easier to see if you are refactoring or just plain breaking things :).
I would definitely recommend you to refactor the code if you feel its junky. Yes, during the process of refactoring you may have some inconsistencies/problems at the start. But that is why we have iterations and testing. Since you are going to build up on this core engine in future, why not make the basement as stable as possible.
However, be very sure on what you are going to do. Because at times long lines of code does not necessarily mean evil. On the other hand they may be very efficient in running time. If/else blocks are not bad if you ask me, as they are very intelligent in branching from a microprocessor's perspective. So, you will have to be judgmental and very clear before you touch this.
But once you refactor the code, you will definitely have fine control over it. And don't forget to document it!! Tomorrow, someone might very well come and say about you on whatever you've told about this guy who have written that core code.
This depends on the constraints you are facing, it's a decision to be based on practical basis, not on theoretical ones. You need three things to consider.
Time: you need to have enough time to learn it, implement it, and test it, without too many other tasks interrupting you
Boss #1: if you are working for someone, he needs to know and approve the time and effort you will spend immediately, required to rebuild your solution
Boss #2: your boss also needs to know that the advantage of having new and clean software will come at the price of possible regressions, and therefore at the beginning of the deployment there may be unexpected bugs
If you have those three, then go ahead and refactor it. It will be surely be worth it!
First and foremost, get all the business logic out of the Form. Second, locate all the parts where the code interacts with the global state (e.g. accessing the embedded system). Delegate all this access to methods. Then, move these methods into a new class and create an instance in the class's constructor. Finally, inject an instance for the class to use.
Following these steps, you can move your embedded system logic ("existing module") to a wrapper class you write, so the interface can be nice and clean and more manageable. Then you can better tackle refactoring the monster method because there is less global state to worry about (only local state).
If the code works and you can integrate your part with minimal changes to it then let the code as it is and do your integration.
If the code is simply a big barrier in your way to add new functionality then it is best for you to refactor it.
Talk with other people that are responsible for the project, explain the situation, give an estimation explaining the benefits gained after refactoring the code and I'm sure (I hope) that the best choice will be made. It is best to speak about what you think, don't keep anything inside, especially if this affects your productivity, motivation etc.
NOTE: Usually rewriting code is out of the question but depending on situation and amount of code needed to be rewritten the decision may vary.
You say that this is having an impact on the future design of the system. In this case I would say it is broken and does need fixing.
But you do have to take into account the business requirements. Often reality gets in the way!
Would it be possible to wrap this code up in another class whose interface better suits how you want to take the system forward? (See adapter pattern)
This would allow you to move forward with your requirements without the poor design having an impact.
It gives you an interface that you understand which you could write some unit tests for. These tests can be based on what your design requires from this code. It ensures that your assumptions about what it is doing is correct. If you say that this code works, then any failing tests may be that your assumptions are incorrect.
Once you have these tests you can safely refactor - one step at a time, and when you have some spare time or when it is needed - as per business requirements.
Quite often I find the best way to truly understand a piece of code is to refactor it.
EDIT
On reflection, as this is one big method with multiple calls to the outside world, you are going to need some kind of inverse Adapter class to wrap this method. If you can inject dependencies into the method (see Dependency Inversion such that the method calls methods in your classes then you can route these to the original calls.

How could you improve this code design?

Lately, I've been making use a lot of the Strategy Pattern along with the Factory Pattern. And I really mean a lot. I have a lot of "algorithms" for everything and factories that retrieve algorithms based on parameters.
Even though the code seems very extensible, and it is, having N factories seems a bit of an abuse.
I know this is pretty subjective, and we're talking without seeing code, but is this acceptable in real world code? Would you change something ?
OK- ask yourself a question. does/will this algorithm implementation ever change? If no then remove the strategy.
I am maintence.
I once was forced (by my pattern lovin' boss) to write a set of 16 "buffer interpreter tuxedo services" using an AbstractFactory and a double DAO pattern in C++ (no reflections, no code gen). All up it something like 20,000 lines of the nastiest code I've even seen (not the least because I didn't really know C++ when I started) and it took about three months.
Since my old boss has moved on I've rewritten them using good 'ole "straight up and down" procedural style C++, with couple of funky-macros... each service is like 60 lines of code, times 16... all up less than a 1000 lines of really SIMPLE code; so simple that even I can follow it.
Cheers. Keith.
Whenever I'm implementing code in this fashion, some questions I ask are:
what components do I need to substitute to test ?
what components will I expect users/admins to disable or substitute (e.g. via Spring configs or similar) ?
what components do I expect or suspect will not be required in the future due to (possibly) changing requirements ?
This all drives how I construct object or components (via factories) and how I implement algorithms. The above is vague, but (of course) the requirements can be similarly difficult to pin down. Without seeing your implementation and your requirements, I can't comment further, but the above should act as some guideline to help you determine whether what you've done is overkill.
If you're using the same design pattern all over the place, perhaps you should either switch to a language that has better support for what you're trying to do or rethink your code to be more idiomatic in your language of choice. After all, that's why we have more than one programming language.
Would depends on the kind of software I'm working on.
Maintenance asks for simple code and factories is NOT simple code.
But extensibility asks sometimes for factories...
So you have to take both in consideration.
Just have in mind that most of the time, you will have to maintain a source file MANY times a year and you will NOT have to extend it.
IMO, patterns should only be used when absolutely needed. If you think it can be handy in two years, you are better to use them... in two years.
How complex is the work the factory is handling? Does object creation really need to be abstracted to a different class? A variation of the factory method is having a simple, in-class factory. This really works best if any dependencies have already been injected.
For instance,
public class Customer
{
public Customer CreateNewCustomer()
{
// handle minimally complex create logic here
}
}
As far as Strategy overuse... Again, as #RichardOD explained, will the algorithm ever really change?
Always keep in mind the YAGNI principle. You Aren't Gonna Need It.
Can't you make an AbstractFactory instead off different standalone factories?
AlgorithmFactory creates the algorithms you need based on the concrete factory.