Objective C linker scoping - objective-c

I ran into a situation where I had the following two implementations located in separate files:
ClassA.m
#implementation ClassA
int _x = 0;
#end
ClassB.m
#implementation ClassB
int _x = 0;
#end
When I compiled, the linker would state:
objective c duplicate symbol __x....
My solution was to mark both variables as static.
Is it then true that all member variables of Classes are just munged into the symbol table without their implementing Classname prepended (unless you mark them as static)? I'd find that hard to believe, otherwise I'd think using static would be the rule, not the exception...

You've not declared instance variables of the class there; you've declared global variables hence why the linker tells you that there's 2 symbols called _x.
You probably wanted to put them in your #interface for ClassA and ClassB.

Instance variable would be declared in the implementation file of your class, in the header file. You'll want the two class files to have something like this:
#interface ClassA : NSObject
{
int _x; // or NSInteger _x;
}

Related

Objective-C: Different ways of declaring private variables. Any differences between them?

I have thought of different ways of declaring private variables. I want to know whether there are any differences between them.
First way:
//In .h file
#interface DataExtract : NSObject
{
#private
double test;
}
Second way:
//In .m file. test is not declared in .h file
static double test;
Third way:
//In .m file. test is not declared in .h file
double test;
Any help would be much appreciated. Thank you.
All of them are not a good solution if you want an ivar.
I would even tend to only use properties with autogenerated ivars in an class extension in the implementation file only one line (#synthesize is automatically generated in Objective-C 3.0).
First way:
Yes this is an ivar, but you shouldn't declare it in the header file, if you declare it #private, then use the #implementation {...} block. In the implementation block you don't need to declare it #private, because it defaults to #protected, but in the implementation block it is not visible for subclasses
Second way:
That is a variable only visible in the translation unit, here the .m file itself. It is not global for the whole app. The value is persistent for every instance of your class, so it is no ivar (instance variable).
Third way:
That is also no ivar, it is a variable which defaults to extern, because you did not write static. That means it is in the global symbol table and can be used in other translation units /files if they #import/#include the .m file.
Your second and third examples are not instance variables, but global variables (with differing scope) and the same value will be shared across the entire process.
You can declare a private #interface in the .m file.
//DataExtract.m
#interface DataExtract ()
//your variables
#end
#implementation DataExtract
#end
For more info you can go here
Is there a reason you want to use just an instance variable, instead of a property?
You can declare a private property like so:
// Private Interface in .m file
#interface DataExtract()
#property (nonatomic) double test;
#end
Edit:
If you do want to use a private ivar, instead of a property, you could do it like so:
// Private Interface in .m file
#interface DataExtract() {
double test;
}
#end

What is the difference between the areas where you can declare instance variables in Objective-C? [duplicate]

Ever since starting to work on iOS apps and objective C I've been really puzzled by the different locations where one could be declaring and defining variables. On one hand we have the traditional C approach, on the other we have the new ObjectiveC directives that add OO on top of that. Could you folks helps me understand the best practice and situations where I'd want to use these locations for my variables and perhaps correct my present understanding?
Here's a sample class (.h and .m):
#import <Foundation/Foundation.h>
// 1) What do I declare here?
#interface SampleClass : NSObject
{
// 2) ivar declarations
// Pretty much never used?
}
// 3) class-specific method / property declarations
#end
and
#import "SampleClass.h"
// 4) what goes here?
#interface SampleClass()
// 5) private interface, can define private methods and properties here
#end
#implementation SampleClass
{
// 6) define ivars
}
// 7) define methods and synthesize properties from both public and private
// interfaces
#end
My understanding of 1 and 4 is that those are C-style file-based declarations and definitions that have no understanding whatsoever of the concept of class, and thus have to be used exactly how they would be used in C. I've seen them used for implementing static variable-based singletons before. Are there other convenient uses I'm missing?
My take from working with iOS is that ivars have been alost completely phased out outside of the #synthesize directive and thus can be mostly ignored. Is that the case?
Regarding 5: why would I ever want to declare methods in private interfaces? My private class methods seem to compile just fine without a declaration in the interface. Is it mostly for readability?
Thanks a bunch, folks!
I can understand your confusion. Especially since recent updates to Xcode and the new LLVM compiler changed the way ivars and properties can be declared.
Before "modern" Objective-C (in "old" Obj-C 2.0) you didn't have a lot of choices. Instance variables used to be declared in the header between the curly brackets { }:
// MyClass.h
#interface MyClass : NSObject {
int myVar;
}
#end
You were able to access these variables only in your implementation, but not from other classes. To do that, you had to declare accessor methods, that look something like this:
// MyClass.h
#interface MyClass : NSObject {
int myVar;
}
- (int)myVar;
- (void)setMyVar:(int)newVar;
#end
// MyClass.m
#implementation MyClass
- (int)myVar {
return myVar;
}
- (void)setMyVar:(int)newVar {
if (newVar != myVar) {
myVar = newVar;
}
}
#end
This way you were able to get and set this instance variable from other classes too, using the usual square bracket syntax to send messages (call methods):
// OtherClass.m
int v = [myClass myVar]; // assuming myClass is an object of type MyClass.
[myClass setMyVar:v+1];
Because manually declaring and implementing every accessor method was quite annoying, #property and #synthesize were introduced to automatically generate the accessor methods:
// MyClass.h
#interface MyClass : NSObject {
int myVar;
}
#property (nonatomic) int myVar;
#end
// MyClass.m
#implementation MyClass
#synthesize myVar;
#end
The result is much clearer and shorter code. The accessor methods will be implemented for you and you can still use the bracket syntax as before. But in addition, you can also use the dot syntax to access properties:
// OtherClass.m
int v = myClass.myVar; // assuming myClass is an object of type MyClass.
myClass.myVar = v+1;
Since Xcode 4.4 you don't have to declare an instance variable yourself anymore and you can skip #synthesize too. If you don't declare an ivar, the compiler will add it for you and it will also generate the accessor methods without you having to use #synthesize.
The default name for the automatically generated ivar is the name or your property starting with an underscore. You can change the generated ivar's name by using #synthesize myVar = iVarName;
// MyClass.h
#interface MyClass : NSObject
#property (nonatomic) int myVar;
#end
// MyClass.m
#implementation MyClass
#end
This will work exactly as the code above. For compatibility reasons you can still declare ivars in the header. But because the only reason why you would want to do that (and not declare a property) is to create a private variable, you can now do that in the implementation file as well and this is the preferred way.
An #interface block in the implementation file is actually an Extension and can be used to forward declare methods (not needed anymore) and to (re)declare properties. You could for instance declare a readonly property in your header.
#property (nonatomic, readonly) myReadOnlyVar;
and redeclare it in your implementation file as readwrite to be able to set it using the property syntax and not only via direct access to the ivar.
As for declaring variables completely outside of any #interface or #implementation block, yes those are plain C variables and work exactly the same.
First, read #DrummerB's answer. It a good overview of the whys and what you should generally do. With that in mind, to your specific questions:
#import <Foundation/Foundation.h>
// 1) What do I declare here?
No actual variable definitions go here (it's technically legal to do so if you know exactly what you're doing, but never do this). You may define several other kinds of things:
typdefs
enums
externs
Externs look like variable declarations, but they're just a promise to actually declare it somewhere else. In ObjC, they should only be used to declare constants, and generally only string constants. For instance:
extern NSString * const MYSomethingHappenedNotification;
You would then in your .m file declare the actual constant:
NSString * const MYSomethingHappenedNotification = #"MYSomethingHappenedNotification";
#interface SampleClass : NSObject
{
// 2) ivar declarations
// Pretty much never used?
}
As noted by DrummerB, this is legacy. Don't put anything here.
// 3) class-specific method / property declarations
#end
Yep.
#import "SampleClass.h"
// 4) what goes here?
External constants, as described above. Also file static variables can go here. These are the equivalent of class variables in other languages.
#interface SampleClass()
// 5) private interface, can define private methods and properties here
#end
Yep
#implementation SampleClass
{
// 6) define ivars
}
But very rarely. Almost always you should allow clang (Xcode) to create the variables for you. The exceptions are usually around non-ObjC ivars (like Core Foundation objects, and especially C++ objects if this is an ObjC++ class), or ivars that have weird storage semantics (like ivars that don't match with a property for some reason).
// 7) define methods and synthesize properties from both public and private
// interfaces
Generally you shouldn't #synthesize anymore. Clang (Xcode) will do it for you, and you should let it.
Over the last few years, things have gotten dramatically simpler. The side-effect is that there are now three different eras (Fragile ABI, Non-fragile ABI, Non-fragile ABI + auto-syntheisze). So when you see the older code, it can be a little confusing. Thus confusion arising from simplicity :D
I'm also pretty new, so hopefully I don't screw anything up.
1 & 4: C-style global variables: they have file wide scope. The difference between the two is that, since they're file wide, the first will be available to anyone importing the header while the second is not.
2: instance variables. Most instance variables are synthesized and retrieved/set through accessors using properties because it makes memory management nice and simple, as well as gives you easy-to-understand dot notation.
6: Implementation ivars are somewhat new. It's a good place to put private ivars, since you want to only expose what's needed in the public header, but subclasses don't inherit them AFAIK.
3 & 7: Public method and property declarations, then implementations.
5: Private interface. I always use private interfaces whenever I can to keep things clean and create a kind of black box effect. If they don't need to know about it, put it there. I also do it for readability, don't know if there are any other reasons.
This is an example of all kinds of variables declared in Objective-C. The variable name indicate its access.
File: Animal.h
#interface Animal : NSObject
{
NSObject *iProtected;
#package
NSObject *iPackage;
#private
NSObject *iPrivate;
#protected
NSObject *iProtected2; // default access. Only visible to subclasses.
#public
NSObject *iPublic;
}
#property (nonatomic,strong) NSObject *iPublic2;
#end
File: Animal.m
#import "Animal.h"
// Same behaviour for categories (x) than for class extensions ().
#interface Animal(){
#public
NSString *iNotVisible;
}
#property (nonatomic,strong) NSObject *iNotVisible2;
#end
#implementation Animal {
#public
NSString *iNotVisible3;
}
-(id) init {
self = [super init];
if (self){
iProtected = #"iProtected";
iPackage = #"iPackage";
iPrivate = #"iPrivate";
iProtected2 = #"iProtected2";
iPublic = #"iPublic";
_iPublic2 = #"iPublic2";
iNotVisible = #"iNotVisible";
_iNotVisible2 = #"iNotVisible2";
iNotVisible3 = #"iNotVisible3";
}
return self;
}
#end
Note that the iNotVisible variables are not visible from any other class. This is a visibility issue, so declaring them with #property or #public doesn't change it.
Inside a constructor it's good practice to access variables declared with #property using underscore instead self to avoid side effects.
Let's try to access the variables.
File: Cow.h
#import "Animal.h"
#interface Cow : Animal
#end
File: Cow.m
#import "Cow.h"
#include <objc/runtime.h>
#implementation Cow
-(id)init {
self=[super init];
if (self){
iProtected = #"iProtected";
iPackage = #"iPackage";
//iPrivate = #"iPrivate"; // compiler error: variable is private
iProtected2 = #"iProtected2";
iPublic = #"iPublic";
self.iPublic2 = #"iPublic2"; // using self because the backing ivar is private
//iNotVisible = #"iNotVisible"; // compiler error: undeclared identifier
//_iNotVisible2 = #"iNotVisible2"; // compiler error: undeclared identifier
//iNotVisible3 = #"iNotVisible3"; // compiler error: undeclared identifier
}
return self;
}
#end
We can still access the not visible variables using the runtime.
File: Cow.m (part 2)
#implementation Cow(blindAcess)
- (void) setIvar:(NSString*)name value:(id)value {
Ivar ivar = class_getInstanceVariable([self class], [name UTF8String]);
object_setIvar(self, ivar, value);
}
- (id) getIvar:(NSString*)name {
Ivar ivar = class_getInstanceVariable([self class], [name UTF8String]);
id thing = object_getIvar(self, ivar);
return thing;
}
-(void) blindAccess {
[self setIvar:#"iNotVisible" value:#"iMadeVisible"];
[self setIvar:#"_iNotVisible2" value:#"iMadeVisible2"];
[self setIvar:#"iNotVisible3" value:#"iMadeVisible3"];
NSLog(#"\n%# \n%# \n%#",
[self getIvar:#"iNotVisible"],
[self getIvar:#"_iNotVisible2"],
[self getIvar:#"iNotVisible3"]);
}
#end
Let's try to access the not visible variables.
File: main.m
#import "Cow.h"
#import <Foundation/Foundation.h>
int main(int argc, char *argv[]) {
#autoreleasepool {
Cow *cow = [Cow new];
[cow performSelector:#selector(blindAccess)];
}
}
This prints
iMadeVisible
iMadeVisible2
iMadeVisible3
Note that I was able to access the backing ivar _iNotVisible2 which is private to the subclass. In Objective-C all variables can be read or set, even those that are marked #private, no exceptions.
I didn't include associated objects or C variables as they are different birds. As for C variables, any variable defined outside #interface X{} or #implementation X{} is a C variable with file scope and static storage.
I didn't discuss memory management attributes, or readonly/readwrite, getter/setter attributes.

storing instance reference in singleton in obj-c

Let's say I have 2 classes, A and B. A is a singleton. I declare A in B, so I can access the singletons vars in methods in B.
B then creates an instance of another class, say class C.
C Then creates an instance of another class, say class D.
What I need to do is run a method in the instance of class B, from class D, and that's what is driving me nuts.
My first thought was to put a reference to the instance of class b, in my singleton (class A), something like...
sharedInstance.classBReference = self;
..and then declare the singleton in Class D, and then use something like this in class D instance...
[sharedInstance.classBInstance classBInstanceMethod];
But of course as soon as I did..
classB *classBReference;
In the header of my singleton, it game me the "unknown type" which I read about on here, so instead, I put a
#class classB;
above the #interface, and then I was able to declare...
classB *classBReference;
Without an error of unknown type, but in the init method of class B, this...
sharedInstance.classBReference = self;
Still gives me an error of type
"property classBReference not found on objet of type "class A*" (the singleton) did you mean to access ivar classBReference?"
And I have no idea why it's doing that, what's the solution? or is there a better way to do what I'm trying to do?
Dots and Arrows
The "dot notation" is a somewhat recent addition to Objective-C and provides a shorthand notation for accessors. If you have a pointer to an object (or a struct!), you cannot access its instance variables with . but only with ->.
Your line
sharedInstance.classBReference = self;
is exactly the same as
[sharedInstance setClassBReference:self];
The problem is that you don't have any such method -setClassBReference:. In order to set the instance variable, you must instead write
sharedInstance->classBReference = self;
#protected variables
After switching your line with this one, you may (if you haven't made it #public) see the error
Instance variable 'classBReference' is private
In this case, you need to alter your classA interface so that classBReference is declared to be #public. Your list of instance variables in classA should look something like
#interface classA : NSObject
{
//#protected
//(The #protected keyword is optional when at the beginning of the list; instance
//variables are protected by default, which is why you're needing to declare your
//instance variable classBReference to be #public (since classB is not a subclass
//of classA and consequently cannot access its protected instance variables).
//....
//some protected instance variables
//....
#private
//....
//some private instance variables
//....
#public
//....
//some public instance variables
classB *classBReference;
//....
#protected
//....
//some more protected instance variables
//Note that #protected is not optional in order to make the instance variables
//here be protected since they are declared subsequent to the prior #public.
//....
}
//....
#end
Using #properties
The case of classBReference
That being said, it is widely regarded as a better practice to use accessors rather than instance variables in general. In order to do this, you should add a property to your classA interface:
#interface classA : NSObject
{
classB *classBReference;
}
#property classB *classBReference;
#end
and synthesize the classBReference property to access the classBReference instance variable in classA's implementation as follows:
#implementation classB
#synthesize classBReference = classBReference;
The general set-up
The #synthesize is somewhat unclear on account of the fact that we have both an instance variable and a property with the same name. Some clarification is in order. In general, in a class's ("MyObject" in this example) #interface one declares an instance variable ("myVariable" in this example) and a property ("myProperty" in this example).
#interface MyObject : NSObject
{
SomeObject *myVariable;
}
#property SomeObject *myProperty;
#end
In the class's #implementation one has the line
#synthesize myProperty = myVariable.
The result of this code is that, given an instance
MyObject *object = //...
of the class, one is able to write
SomeObject *someObject = //...
[object setMyProperty:someObject];
and
SomeObject *someOtherObject = [object myProperty];
The result of calling -setMyProperty: on the instance of MyObject is that myVariable is set equal to the argument passed into the method--in this case someObject. Similarly, the result of calling -myProperty on the instance of MyObject is that myVariable is returned.
What does it get us?
Without the #property and #synthesize directives, one would have to declare the methods
- (void)setMyProperty:(SomeObject *)myProperty;
- (SomeObject *)myProperty;
manually and define them manually as well:
- (void)setMyProperty:(SomeObject *)myProperty
{
myVariable = myProperty;
}
- (SomeObject *)myProperty
{
return myVariable;
}
The #property and #synthesize provide some abridgment to this code. The amount of code that is generated for you becomes even more beneficial when you use various of the property attributes.
Note: There is more to say about the #property and #synthesize directives. For a start, not only can you write #synthesize myProperty; omitting the variable name, you can omit the synthesizing of myProperty entirely, and the variable names that are used automatically are different from one another in these two cases.
A Bit More on Dot Notation
The dot notation from your question provides another layer of abbreviation. Rather than having to write
[object setMyProperty:someObject];
you are now able to write
object.myProperty = someObject;
Similarly, rather than having to write
SomeObject *someOtherObject = [object myProperty];
you are now able to write
SomeObject *someOtherObject = object.myProperty;
It is important to note that this is just just notation. Though it "kinda looks like" we're doing simple assignment when we "set object.myProperty equal to someObject", that is not the case. In particular, when we execute the line
object.myProperty = someObject;
the method
- (void)setMyProperty:(SomeObject *)someObject
is executed. For this reason, dot notation is a subject of some contention. It is a convenience, but it is important to keep in mind what your code is doing.
The error message tells you the answer. You should define classBReference as property or use classBReference as ivar.
It sounds like you'd be less confused by avoiding the global variable (aka singleton). Give the C a reference to the B when the B creates the C. Give the D a reference to the B when the C creates the D.
If you need to avoid a retain cycle, make the back-references to the B either weak (if your deployment target is at least iOS 5.0) or unsafe_unretained (if your deployment target is earlier than iOS 5.0).

Undeclared ivars?

I've come across Objective-C code that declares a variable right below the #implementation line in a .m file and not in the #interface block of the .h file. It then proceeds to use it like a private ivar. I haven't been able to find documentation about declaring variables this way and would like to know the impact.
Example:
.h
#interface MyClass {
#private
int _myPrivInt1;
}
#end
.m
#implementation
int _myPrivInt2;
#end
Questions:
What is the technical difference between these two variables?
Is it the same as declaring an ivar in the .h #interface block using the #private modifier or is it more like a C global variable?
Are there any implications when declaring a variable this way?
Should it be avoided?
Is there a term for declaring variables like _myPrivInt2 that would have made my googling a bit more successful?
You must declare instance variables in interface block.
#implementation
int _myPrivInt2;
#end
Declaring variable this way you do not actually declare iVar for your class. _myPrivInt2 will be a global variable and can be accessed from any part of your code using extern declaration:
// SomeOtherFile.m
extern int _myPrivInt2;
...
_myPrivInt2 = 1000;
You can check - your _myPrivInt2 variable will be equal 1000 after code in SomeOtherFile.m executes.
You can also specify static linkage specifier to your _myPrivInt2 so it will be accessible inside current translation unit only
#implementation
static int _myPrivInt2; // It cannot be accessed in other files now
#end

Difference between #interface declaration and #property declaration

I'm new to C, new to objective C. For an iPhone subclass, Im declaring variables I want to be visible to all methods in a class into the #interface class definition eg
#interface myclass : UIImageView {
int aVar;
}
and then I declare it again as
#property int aVar;
And then later I
#synthesize aVar;
Can you help me understand the purpose of three steps? Am I doing something unnecessary?
Thanks.
Here, you're declaring an instance variable named aVar:
#interface myclass : UIImageView {
int aVar;
}
You can now use this variable within your class:
aVar = 42;
NSLog(#"The Answer is %i.", aVar);
However, instance variables are private in Objective-C. What if you need other classes to be able to access and/or change aVar? Since methods are public in Objective-C, the answer is to write an accessor (getter) method that returns aVar and a mutator (setter) method that sets aVar:
// In header (.h) file
- (int)aVar;
- (void)setAVar:(int)newAVar;
// In implementation (.m) file
- (int)aVar {
return aVar;
}
- (void)setAVar:(int)newAVar {
if (aVar != newAVar) {
aVar = newAVar;
}
}
Now other classes can get and set aVar via:
[myclass aVar];
[myclass setAVar:24];
Writing these accessor and mutator methods can get quite tedious, so in Objective-C 2.0, Apple simplified it for us. We can now write:
// In header (.h) file
#property (nonatomic, assign) int aVar;
// In implementation (.m) file
#synthesize aVar;
...and the accessor/mutator methods will be automatically generated for us.
To sum up:
int aVar; declares an instance variable aVar
#property (nonatomic, assign) int aVar; declares the accessor and mutator methods for aVar
#synthesize aVar; implements the accessor and mutator methods for aVar
This declares an instance variable in your object:
#interface myclass : UIImageView {
int aVar;
}
Instance variables are private implementation details of your class.
If you want other objects to be able to read or set the value of the instance variable (ivar), you can declare it as a property:
#property int aVar;
This means that the compiler expects to see setter and getter accessor methods for the property.
When you use the #synthesize keyword, you are asking the compiler to automatically generate setter and getter accessor methods for you.
So, in this case the compiler will generate code similar to this when it encounters the #synthesize keyword:
- (int) aVar
{
return aVar;
}
- (void)setAVar:(int)someInt
{
aVar = someInt;
}
By default on the iPhone (and on the 32-bit runtime on the Mac), #synthesize requires an instance variable to be present in order to store the property's value. This ivar is usually named the same as the property, but doesn't have to be, for instance you could do this:
#interface myclass : UIImageView {
int aVar;
}
#property int someValue;
#synthesize someValue = aVar;
Neither #synthesize nor #property are actually required, you can create your own getter and setter methods, and as long as you create them using Key-Value Coding-compliant syntax, the property will still be usable.
The requirement for an ivar to be present as well as the #property declaration is due to the fragile base class limitation of the 32-bit Objective-C runtime on both the Mac and iPhone. With the 64-bit runtime on the Mac you don't need an ivar, #synthesize generates one for you.
Note that there are numerous keywords you can use with your #property declaration to control what sort of synthesized accessor code is created, such as readonly for a getter-only accessor, copy, atomic, nonatomic and so on. More information is in the Objective-C 2.0 Programming Language documentation.
Classes can have instance variables (ivars). These are in the first section, and are only visible to code in that class, not any outside code. I like to prefix them with an underscore to show their internal-ness. In low level terms, the ivars are added as an additional member to the struct that the class you are creating uses internally.
The second declaration, #property, is a declared property. It is not required (except when you are using #synthesize), but it helps other programmers (and the compiler!) know that you are dealing with a property, and not just two methods -setAVar and -aVar, which is the alternative way of doing this.
Thirdly, the #synthesize actually creates the methods to set and access the property from outside the class. You can replace this with your own setter and getter methods, but only do that if you need to, as the built-in ones have some features that you would otherwise have to code yourself. In fact, using the #synthesize aVar = _someVariable; syntax, you can have your property actually reference a differently named instance variable!
Short version:
The #property is just a hint to the compiler and other programmers that you are making a property and not just getter/setter methods. The instance variables are internal to the class, and otherwise cannot be normally accessed from outside it. The #synthesize just creates simple getters and setters for you, to go with your #property, but you can also just code those getters and setters yourself, like any other method.
Class A
#interface myclass : UIImageView {
int aVar;
}
If you declare like this then you can only use this variable within your class A.
But suppose in Class B
A *object=[A new];
object.aVar---->not available
For this you should **declare aVar as a property in Class A**
so class A should look like
Class A
#interface myclass : UIImageView {
int aVar;
}
#property int iVar;
and
.m file
#synthesize iVar;
So now you can use this iVar in another class Suppose B
Class B
#import "Class A.h"
enter code here
A *object=[A new];
object.aVar---->available
means
object.aVar=10;
#interface declares the instances variables of a class in obj-c. You need it to create an instance variable. However the variable is not visible outside the class by default (as the field is by default protected).
#property tells the compiler to specify a particular property accessor (get/set) method. However, you will need to use #synthesize to actually have the compiler generate the simple accessors automatically, otherwise you are expected to create them on your own.
I recently started learning iphone apps. As per my knowledge #property is used in .h file as a setter method and #synthesize in .m file as getter method. In Java we use setter and getter methods, same as Java, in Objective C we use #property and #synthesize.
Please forgive me If u think I mislead you.