Exclamation operator? - operators

I'm learning D and have seen a lot of code like this:
ushort x = to!ushort(args[1]);
I assume this casts args[1] to ushort, but what's the difference between this and cast(ushort)?
EDIT: And what other uses does the exclamation mark operator have?

In D,
to!ushort(args[1])
is shorthand for the template instantiation
to!(ushort)(args[1])
and is similar to
to<ushort>(args[1])
in languages like C++/Java/C#.
The exclamation point is to note the fact that it's not a regular argument, but a template argument.
The notation does not use angle brackets because those are ridiculously difficult to parse correctly for a compiler (they make the grammar very context-sensitive), which makes it that much more difficult to implement a correct compiler. See here for more info.
The only other use I know about is just the unary 'not' operation (e.g. false == !true)... I can't think of any other uses at the moment.
Regarding the cast:
cast(ushort) is an unchecked cast, so it won't throw an exception if the value is out of range.
to!ushort() is a checked cast, so it throws an exception if the value is out of range.

The exclamation mark here is not an operator, it is just a token part of the explicit template instantiation syntax (described in detail here).
std.conv.to (docs) is a function template for converting between arbitrary types. It is implemented entirely in the library and has no special support in the language. It has a broader and different scope compared to the cast operator.
The to template takes two type parameters; a "to" type and a "from" type, in that order. In your example, the template is explicitly instantiated with the single type argument ushort for the "to" parameter, and a second type argument string (assuming args comes from the first parameter to main) is automatically inferred from the regular function argument passed to the function (args[1]) as the "from" parameter.
The resulting function takes a string parameter and returns a ushort parsed from that string, or throws an exception if it failed. The cast operator will not attempt this kind of high-level conversion.
Note that if there is more than one explicit template parameter, or that parameter has more than one token in it (ushort is a single keyword token), you must wrap the template parameter list in parentheses:
ushort result;
result = to!(typeof(result))(args[1]);
In this example, typeof, (, result and ) are four separate tokens and the parentheses are thus required.
To answer your last question, the ! token is also used for the unary not operator, unrelated to template instantiations:
bool yes = true;
bool no = !yes; // 'no' is false

You already got two excellent answers by jA_cOp and Merhdad. I just want answer directly to the OP question (what's the difference between this and cast(ushort)?) - The difference is that cast(ushort)args[1] will not work (you cannot cast from a string to an uint just like that), while the to!(type)(param) template knows what to do with the string and how to convert it to the primitive type.

Related

How to stop Kotlin from widening types?

So I'm trying to define a method like this
fun <R,F> myFunction(prop: KProperty1<R, F>, value:F) {}
// so that the compiler only allows me to invoke it like
myFunction(User::name, "Alejandro")
// and stops developers from doing illegal things like
myFunction(User::name, 123)
//However, compiler doesn't complain if I do that... it widens the type to Any
How can I achieve that?
Kotlin is "widening" the type here because the value type parameter (i.e. the second type parameter) of KProperty1 is defined with keyword out which makes that parameter covariant.
This means that for instance KProperty1<User, String> is a subtype of KProperty1<User, Any>, and hence User::name which is presumably a KProperty1<User, String>, can also be seen as a special case of KProperty<User, Any>. Therefore, it is totally legal to call myFunction<User,Any>(User::name, 123).
The logic behind this can be derived from the name of the out keyword: It is expected that the typed parameter is only used in "out position" of any function call. In the case of KProperty1 this makes sense, because it is the type of the return value of the property. When you get a value from a KProperty1<K, V>, that value is of type V and thus it can be used anywhere where it is okay to have some supertype of V.
This should only be a problem, if you want to use the value in the "in position" of some function, for instance, if you want to write a function that takes a value of type V and store it in a KProperty1<K, V>.
If this is what you want, you are lucky, because you can and should just use KMutableProperty1<K,V> where the value parameter does not have an out keyword which means that it is invariant. Also, that interface allows you to put the value into the property.
Changing your function definition to
fun <R,F> myFunction(prop: KMutableProperty1<R, F>, value:F) {}
makes that the compiler allows myFunction(User::name, "Alejandro"), but it complains on myFunction(User::name, 123).
See also: Kotlin documentation on Variance

Could someone, please, explain me the implementation of the following "Kotlin Literal high order function"?

I am a newbie in Kotlin, I just started to learn it,
I get the following code example about literal/high order function:
fun myHigherOrderFun(functionArg: (Int)->String) = functionArg(5)
println ( myHigherOrderFun { "The Number is $it" })
prints "The Number is 5"
Which I have difficulty to understand: the function myHigherOrderFun get a lambda function as parameter but i can't understand, where is the (Int) input parameter? I see is passed in functionArg(5)... but i can't realize how is possible that?
Thanks in advance.
To start from the beginning, in Kotlin functions are first-class types, just like numbers and Strings and stuff.  So a function can take another function as a parameter, and/or return a function as its result.  A function which does this is called a ‘higher-order function’.
And that's what you have in your example!  The line:
fun myHigherOrderFun(functionArg: (Int)->String) = functionArg(5)
defines myHigherOrderFun() as a function which takes one parameter, which is itself a function taking a single Int parameter and returning a String.  (myHigherOrderFun() doesn't specify an explicit return type, so it's inferred to be a String too.)
The next line is probably where things are less clear:
println(myHigherOrderFun{ "The Number is $it" })
The first non-obvious thing is that it's calling myHigherOrderFun() with a parameter.  Because that parameter is a lambda, Kotlin lets you omit the usual (…), and use only the braces.
The other non-obvious thing is the lambda itself: { "The Number is $it" }. This is a literal function taking one parameter (of unspecified type).
Normally, you'd have to specify any parameters explicitly, e.g.: { a: Char, b: Int -> /* … */ }.  But if there's exactly one parameter, and you aren't specifying its type, then you can skip that and just refer to the parameter as it.  That's what's happening here.
(If the lambda didn't reference it, then it would be a function taking no parameters at all.)
And because the lambda is being passed to something expecting a function taking an Int parameter, Kotlin knows that it must be an Int, which is why we can get away without specifying that.
So, Kotlin passes that lambda to the myHigherOrderFun(), which executes the lambda, passing 5 as it.  That interpolates it into a string, which it returns as the argument to println().
Many lambdas take a single parameter, so it gets used quite a lot in Kotlin; it's more concise (and usually more readable) than the alternative.  See the docs for more info.

String template to set the default value of PARAMETER

Is it possible, in ABAP, to evaluate string templates dynamically?
Normally, you will have some string template in code that will be checked by the compiler. (The variables in the curly brackets are checked by the compiler at compile time).
However, is it possible to have a string evaluated at runtime?
So, instead of:
data(val) = |System ID: { sy-sysid }|.
I would like the string to be interpolated to come from elsewhere, for example:
parameter: p_file type string lower case default '/mnt/{ sy-sysid }/file.txt'.
In this case, I would like to have the value of p_file to be evaluated at runtime to substitute the variable (sy-sysid) with the runtime value.
You could, of course, program your own substitution by finding all occurrences of variables with curly brackets with a regex expression, then evaluate the variable values with ASSIGN and substitute them back into the string, but I am looking for a built-in way to do this.
Sorry, this is maybe a stupid example, but hopefully you understand what I mean. (If not, please let me know in the comments and I will try and clarify).
The problem in your snippet is not with string template but with PARAMETER behavior. It does not allow dynamics in DEFAULT clause.
To achieve what you want you should use INITIALIZATION and set path value in runtime:
parameter: p_file type string lower case.
INITIALIZATION.
p_file = | /mnt/{ sy-sysid }/file.txt |.
Unfortunately, the example you gave, does not make any sense to me. ABAP String templates are evaluated at run-time and type-checked at compile-time.
In your example, it is always the run-time value of SY-SYSID that will be written to the variable.
I guess what you want to do is circumvent compile-time checks for expressions inside a string template.
Please try to give us your actual use case, so maybe we find an even better solution to your problem.
However, here is what I think could help you:
Personally, I do not recommend to write code like the one below, because it is extremely error-prone likely to mislead other programmers and because there is very likely a better solution.
Given that you know the name of a variable at run-time, try this:
".. say LV_VARNAME is a charlike variable that contains a
" variable name at runtime.
"NOTE that the variable LV_VARNAME must be visible in the scope of the
"following code.
FIELD-SYMBOLS: <my_var> TYPE any.
ASSIGN (lv_varname) TO <my_var>.
DATA(lv_str) = |The value is { <my_var> }|.

How to construct a Complex from a String using Python's C-API?

How to use the Python C-API for the Complex class (documented here) to:
convert a general PyObject (which might be a String, Long, Float, Complex) into a Complex PyObject?
convert a Complex PyObject into String PyObject?
Python has a complex() function, documented here):
Return a complex number with the value real + imag*j or convert a
string or number to a complex number. If the first parameter is a
string, it will be interpreted as a complex number and the function
must be called without a second parameter. The second parameter can
never be a string. Each argument may be any numeric type (including
complex). If imag is omitted, it defaults to zero and the function
serves as a numeric conversion function like int(), long() and
float(). If both arguments are omitted, returns 0j.
However, it isn't obvious which API function (if any) is backing it.
It would appear none of them, is the above paragraph talks about two PyObject* parameters, and none of the API functions listed match that signature.
When in doubt, do what Python does: call the constructor.
PyObject *c1 = PyObject_CallFunction(PyComplex_Type, "s", "1+2j");
If (!c1)
return NULL;

Passing parameters of varying Types

I am using a procedure which involves parameter passing and the parameter being passed is a variable. Because I have explicitly declared the data type of another parameter, I need to do the same for this one. What data type do I declare the parameter as if it is a variable?
Thanks
An example of what you are doing and what Types you are dealing with would have been nice. You can implement Overloading to provide for different parameter Types:
Friend Function FooBar(n As Integer) As Integer
Friend Function FooBar(n As Int64) As Integer
Friend Function FooBar(n As Short) As Integer
The compiler will pick the function which matches the data type being passed. Internally, they might do whatever based on the Type passed, then call another procedure to perform any stuff common to them all.
There is probably a finite number of types you need it to work with. For instance Font, Point and Rectangle probably make no sense. Even Date is dubious because you cannot do stuff to a date in the same way as with an Int or Long. String is also not likely needed because you can always pass it as FooBar(CInt(someString)) provided it does contain a valid integer or whatever.
You can also use a generic to tell the function what you are passing:
Private Function FooBar(Of T)(parm As T) As Integer
' called as:
ziggy = FooBar(Of Int32)(n)
zoey = FooBar(Of String)(str)
This might even be Private Function FooBar(Of T)(parm As T) As T if the function return varies depending on the parameter Type passed. There are many uses for this (one of which is to avoid passing a param as Object), but as a general purpose way of passing any type you want it is not a good idea: internally you will likely have to have a big If/Else to handle the different types their own way.
Turning off Option Strict is never advisable since all sorts of unwanted type conversions can take place.
In VB.NET, you can use Object as the type but with Option Strict Off. You can pass any kind of parameter in that case.
for more information, refer : https://stackoverflow.com/a/2890023/3660930