What is the best way to feed Antlr with huge numbers of tokens?
Say we have a list of 100,000 English verbs, how could we add them to our grammar? We could of cause include a huge grammar file like verbs.g, but maybe there is a more elegant way, by modifying a .token file etc?
grammar verbs;
VERBS:
'eat' |
'drink' |
'sit' |
...
...
| 'sleep'
;
Also should the tokens rather be lexer or parser tokens, ie VERBS: or verbs: ? Probably VERBS:.
I rather would use semantic predicates.
For this you have to define a token
word : [a-z]+
and at every site you want to use a verb (instead of a generic word) put a semantic predicate that checks if the parsed word is in the list of verbs.
Using recommend not to use the parser/lexer for such a task
each additional verb would change the grammar
each additional verb enlarges the generated code
conjugation is easier
upper/lower case could be handled easier
Related
I need to match the values of key = value pairs in BibTeX files, which can contain arbitrarily nested braces, delimited by braces. I've got as far as matching at most two deep nested curly braces, like {some {stuff} like {this}} with the kludgey:
token brace-value {
'{' <-[{}]>* ['{' <-[}]>* '}' <-[{}]>* ]* '}'
}
I shudder at the idea of going one level further down... but proper parsing of my BibTeX stuff needs at least three levels deep.
Yes, I know there are BibTeX parsers around, but I need to grab the complete entry for further processing, and peek at a few keys meanwhile. My *.bib files are rather tame (and I wouldn't mind to handle a few stray entries by hand), the problem is that I have a lot of them, with much overlap. But some of the "same" entries have different keys, or extra data. I want to consolidate them into a few master files (the whole idea behind BibTeX, right?). Not fun by hand if bibtool gives a file with no duplicates (ha!) of some 20 thousand lines...
After perusing Lenz' "Parsing with Perl 6 Regexes and Grammars" (Apress, 2017), I realized the "regex" machinery (based on backtracking) might actually be a lot more capable than officially admitted, as a regex can call another, and nowhere do I see a prohibition on recursive calls.
Before digging in, a bit of context free grammars: A way to describing nested braces (and nothing else) is with the grammar:
S -> { S } S | <nothing>
I.e., nested braces are either an opening brace, nested braces, a closing brace, more nested braces; or nothing whatsoever. This translates more or less directly to Raku (there is no empty regex, fake it by making the construction optional):
my regex nb {
[ '{' <nb> '}' <nb> ]?
}
Lo and behold, this works. Need to fix up to avoid captures, kill backtracking (if it doesn't match on the first try, it won't ever match), and decorate with "anything else" fillers.
my regex nested-braces {
:ratchet
<-[{}]>*
[ '{' <.nested-braces> '}' <.nested-braces> ]?
<-[{}]>*
};
This checks out with my test cases.
For not-so-adventurous souls, there is the Text::Balanced module for Perl (formerly Perl 5, callable from Raku using Inline::Perl5). Not directly useful to me inside a grammar, unfortunately.
Solution
A way to describe nested braces (and nothing else)
Presuming a rule named &R, I'd likely write the following pattern if I was writing a quick small one-off script:
\{ <&R>* \}
If I was writing a larger program that should be maintainable I'd likely be writing a grammar and, using a rule named R the pattern would be:
'{' ~ '}' <R>*
This latter avoids leaning toothpick syndrome and uses the regex ~ operator.
These will both parse arbitrarily deeply nested paired braces, eg:
say '{{{{}}}}' ~~ token { \{ <&?ROUTINE>* \} } # 「{{{{}}}}」
(&?ROUTINE refers to the routine in which it appears. A regex is a routine. (Though you can't use <&?ROUTINE> in a regex declared with / ... / syntax.)
regex vs token
kill backtracking
my regex nested-braces {
:ratchet
The only difference between patterns declared with regex and token is that the former turns ratcheting off. So using it and then immediately turning ratcheting on is notably unidiomatic. Instead:
my token nested-braces {
Backtracking
the "regex" machinery (based on backtracking)
The grammar/regex engine does include backtracking as an optional feature because that's occasionally exactly what one wants.
But the engine is not "based on backtracking", and many grammars/parsers make little or no use of backtracking.
Recursion
a regex can call another, and nowhere do I see a prohibition on recursive calls.
This alone is nothing special for contemporary regex engines.
PCRE has supported recursion since 2000, and named regexes since 2003. Perl's default regex engine has supported both since 2007.
Their support for deeper levels of recursion and more named regexes being stored at once has been increasing over time.
Damian Conway's PPR uses these features of regexes to build non-trivial (but still small) parse trees.
Capabilities
a lot more capable
Raku "regexes" can be viewed as a cleaned up take on the unfolding regex evolution. To the degree this helps someone understand them, great.
But really, it's a whole new deal. For example, they're turing complete, in a sensible way, and thus able to parse anything.
than officially admitted
Well that's an odd thing to say! Raku's Grammars are frequently touted as one of Raku's most innovative features.
There are three major caveats:
Performance The primary current caveat is that a well written C parser will blow the socks off a well written Raku Grammar based parser.
Pay off It's often not worth the effort it takes to write a fully correct parser for a non-trivial format if there's an existing parser.
Left recursion Raku does not automatically rewrite left recursion (infinite loops).
Using existing parsers
I know there are BibTeX parsers around, but I need to grab the complete entry for further processing, and peek at a few keys meanwhile.
Using a foreign module in Raku can be a bit of a revelation. It is not necessarily like anything you'll have experienced before. Raku's foreign language adaptors can do smart marshaling for you so it can be like you're using native Raku features.
Two of the available foreign language adaptors are already sufficiently polished to be amazing -- the ones for Perl and for C.
I'm pretty sure there's a BibTeX package for Perl that wraps a C BibTeX parser. If you used that you'd hopefully get parsing results all nicely wrapped up into Raku objects as if it was all Raku in the first place, but retaining much of the high performance of the C code.
A Raku BibTeX Grammar?
Perhaps your needs do call for creating and using a small Raku Grammar.
(Maybe you're doing this partly as an exercise to familiarize yourself with Raku, or the regex/grammar aspect of Raku. For that it sounds pretty ideal.)
As soon as you begin to use multiple regexes together -- even just two -- you are closing in on grammar territory. After all, they're just an easy-to-use construct for using multiple regexes together.
So if you decide you want to stick with writing parsing code in Raku, expect to write it something like this:
grammar BiBTeX {
token TOP { ... }
token ...
token ...
}
BiBTeX.parse: my-bib-file
For more details, see the official doc's Grammar tutorial or read Moritz's book.
OK, just (re) checked. The documentation of '{' ~ '}' leaves a whole lot to desire, it is not at all clear it is meant to handle balanced, correctly nested delimiters.
So my final solution is really just along the lines:
my regex nested-braces {
:ratchet
'{' ~ '}' .*
}
Thanks everyone! Lerned quite a bit today.
I have a lexer grammar that defines a lexer that is used in two ways: to identify tokens for a syntax-aware editor, and to identify tokens for the parser. In the first case, the lexer should return comments and whitespace, but in the second case, the comments and whitespace are not wanted. Do I need two different lexer classes, each defined by its own variant of the grammar? Or can I accomplish this with a single lexer by using channels? How?
If I need two separate grammars, I assume I can factor out all the rules except for comments and whitespace, and then import those rules from that separate "common" grammar.
Usually you filter out tokens (like whitespaces) via token channels (or skip them entirely). This is part of your grammar and hence you'd need 2 grammars if you want whitespaces in one use case and not in the other. And yes, you can import a base grammar with all the common rules into specialized grammars which only hold the differences. You can even override rules (define e.g. the whitespace rule in the base grammar and redefine it in your main grammar).
But keep in mind that not filtering whitespaces will have consequences for all your other rules. In that case you would have to explicitly add whitespace handling to your parser rules everywhere. For instance:
blah: a or b;
versus
blah: a WS* or WS* b;
I just started using ParseKit to explore language creation and perhaps build a small toy DSL. However, the current SVN trunk from Google is throwing a -[PKToken intValue]: unrecognized selector sent to instance ... when parsing this grammar:
#start = identifier ;
identifier = (Letter | '_') | (letterOrDigit | '_') ;
letterOrDigit = Letter | Digit ;
Against this input:
foo
Clearly, I am missing something or have incorrectly configured my project. What can I do to fix this issue?
Developer of ParseKit here.
First, see the ParseKit Tokenization docs.
Basically, ParseKit can work in one of two modes: Let's call them Tokens Mode and Chars Mode. (There are no formal names for these two modes, but perhaps there should be.)
Tokens Mode is more popular by far. Virtually every example you will find of using ParseKit will show how to use Tokens Mode. I believe all of the documentation on http://parsekit.com is using Tokens Mode. ParseKit's grammar feature (that you are using in your example only works in Tokens Mode).
Chars Mode is a very little-known feature of ParseKit. I've never had anyone ask about it before.
So the differences in the modes are:
In Tokens Mode, the ParseKit Tokenizer emits multi-char tokens (like Words, Symbols, Numbers, QuotedStrings etc) which are then parsed by the ParseKit parsers you create (programmatically or via grammars).
In Chars Mode, the ParseKit Tokenizer always emits single-char tokens which are then parsed by the ParseKit parsers you create programmatically. (grammars don't currently work with this mode as this mode is not popular).
You could use Chars Mode to implement Regular Expresions which parse on a char-by-char basis.
For your example, you should be ignoring Chars Mode and just use Tokens Mode. The following Built-in Productions are for Chars Mode only. Do not use them in your grammars:
(PK)Letter
(PK)Digit
(PK)Char
(PK)SpecificChar
Notice how all of those Productions sound like they match individual chars. That's because they do.
Your example above should probably look like:
#start = identifier;
identifier = Word; // by default Words start with a-zA-Z_ and contain -0-9a-zAZ_'
Keep in mind the Productions in your grammars (parsers like identifier) will be working on Tokens already emitted from ParseKit's Tokenizer. Not individual chars.
IOW: by the time your grammar goes to work parsing input, the input has already been tokenized into Tokens of type Word, Number, Symbol, QuotedString, etc.
Here are all of the Built-in Productions available for use in your Grammar:
Word
Number
Symbol
QuotedString
Comment
Any
S // Whitespace. only available when #preservesWhitespaceTokens=YES. NO by default.
Also:
DelimitedString('start', 'end', 'allowedCharset')
/xxx/i // RegEx match
There are also operators for composite parsers:
// Sequence
| // Alternation
? // Optional
+ // Multiple
* // Repetition
~ // Negation
& // Intersection
- // Difference
I have a grammar Foo.xtext (too complex to include it here). Xtext generates InternalFoo.g from it. After some tweaking it also generates DebugInternalFoo.g which claims to be the same thing without actions. Now, I strip off actions with ANTLR directly
java -cp antlr-3.4.jar org.antlr.tool.Strip Internal.g > Stripped.g
I'd expect the three grammars to behave the same way when I check them. But here is what I experienced
InternalFoo.g - error, rule assignment has non-LL(*) decision
DebugInternalFoo.g - no problem, parses fine
Stripped.g - warnings at rule assignment, decision can match using multiple alternatives. It fails to parse properly.
Is it possible that a grammar parses a text differently with or without actions? Or is it a bug in any of the action-remover tools? (The rule in question has syntactic predicates, and without them, it would really have a non-LL(*) decision.)
UPDATE:
I partly found what caused the problem. The rule in question was like this
trickyRule:
({ some complex action})
(expression '=')=>...
Stripping with Antlr removed the action, but left an empty group there:
// Stripped.g
trickyRule:
() (expression '=')=>...
The generation of the debug grammar removes both the action, and the now empty group around it:
// DebugInternalFoo.g
trickyRule:
(expression '=')=>...
So the lesson learned is: an empty group before a syntactic predicate is not the same as nothing at all.
Is it possible that a grammar parses a text differently with or without actions?
Yes, that is possible. org.antlr.tool.Strip leaves syntactic predicates1, but removes validating2- and gated3 semantic predicates (and member sections that these semantic predicates might use).
For example, the following rules would only match an A_TOKEN:
parser_rule1
: (parser_rule2)=> parser_rule2
;
parser_rule2
: {input.LT(1).getType() == A_TOKEN}? .
;
but if you use the Strip tool on it, it leaves the following:
parser_rule1
: (parser_rule2)=> parser_rule2
;
parser_rule2
: /*{input.LT(1).getType() == A_TOKEN}?*/ .
;
making it match any token.
In other words, Strip could change the behavior of the generated lexer or parser.
1 syntactic predicate: ( ... )=>
2 validating semantic predicate { ... }?
3 gated semantic predicate { ... }?=>
I am very new to Flex/Bison, So it is very navie question.
Pardon me if so. May look like homework question - but I need to implement project based on below concept.
My question is related to two parts,
Question 1
In Bison parser, How do I provide rules for optional input.
Like, I need to parse the statment
Example :
-country='USA' -state='INDIANA' -population='100' -ratio='0.5' -comment='Census study for Indiana'
Here the ratio token can be optional. Similarly, If I have many tokens optional, then How do I provide the grammar in the parser for the same?
My code looks like,
%start program
program : TK_COUNTRY TK_IDENTIFIER TK_STATE TK_IDENTIFIER TK_POPULATION TK_IDENTIFIER ...
where all the tokens are defined in the lexer. Since there are many tokens which are optional, If I use "|" then there will be many different ways of input combination possible.
Question 2
There are good chance that the comment might have quotes as part of the input, so I have added a token -tag which user can provide to interpret the same,
Example :
-country='USA' -state='INDIANA' -population='100' -ratio='0.5' -comment='Census study for Indiana$'s population' -tag=$
Now, I need to reinterpret Indiana$'s as Indiana's since -tag=$.
Please provide any input or related material for to understand these topic.
Q1: I am assuming we have 4 possible tokens: NAME , '-', '=' and VALUE
Then the grammar could look like this:
attrs:
attr attrs
| attr
;
attr:
'-' NAME '=' VALUE
;
Note that, unlike you make specific attribute names distinguished tokens, there is no way to say "We must have country, state and population, but ratio is optional."
This would be the task of that part of the program that analyses the data produced by the parser.
Q2: I understand this so, that you think of changing the way lexical analysis works while the parser is running. This is not a good idea, at least not for a beginner. Have you even started to think about lexical analysis, as opposed to parsing?