In my postgres database, I have the following relationships (simplified for the sake of this question):
Objects (currently has about 250,000 records)
-------
n_id
n_store_object_id (references store.n_id, 1-to-1 relationship, some objects don't have store records)
n_media_id (references media.n_id, 1-to-1 relationship, some objects don't have media records)
Store (currently has about 100,000 records)
-----
n_id
t_name,
t_description,
n_status,
t_tag
Media
-----
n_id
t_media_path
So far, so good. When I need to query the data, I run this (note the limit 2 at the end, as part of the requirement):
select
o.n_id,
s.t_name,
s.t_description,
me.t_media_path
from
objects o
join store s on (o.n_store_object_id = s.n_id and s.n_status > 0 and s.t_tag is not null)
join media me on o.n_media_id = me.n_id
limit
2
This works fine and gives me two entries back, as expected. The execution time on this is about 20 ms - just fine.
Now I need to get 2 random entries every time the query runs. I thought I'd add order by random(), like so:
select
o.n_id,
s.t_name,
s.t_description,
me.t_media_path
from
objects o
join store s on (o.n_store_object_id = s.n_id and s.n_status > 0 and s.t_tag is not null)
join media me on o.n_media_id = me.n_id
order by
random()
limit
2
While this gives the right results, the execution time is now about 2,500 ms (over 2 seconds). This is clearly not acceptable, as it's one of a number of queries to be run to get data for a page in a web app.
So, the question is: how can I get random entries, as above, but still keep the execution time within some reasonable amount of time (i.e. under 100 ms is acceptable for my purpose)?
Of course it needs to sort the whole thing according to random criteria before getting first rows. Maybe you can work around by using random() in offset instead?
Here's some previous work done on the topic which may prove helpful:
http://blog.rhodiumtoad.org.uk/2009/03/08/selecting-random-rows-from-a-table/
I'm thinking you'll be better off selecting random objects first, then performing the join to those objects after they're selected. I.e., query once to select random objects, then query again to join just those objects that were selected.
It seems like your problem is this: You have a table with 250,000 rows and need two random rows. Thus, you have to generate 250,000 random numbers and then sort the rows by their numbers. Two seconds to do this seems pretty fast to me.
The only real way to speed up the selection is not have to come up with 250,000 random numbers, but instead lookup rows through an index.
I think you'd have to change the table schema to optimize for this case. How about something like:
1) Create a new column with a sequence starting at 1.
2) Every row will then have a number.
3) Create an index on: number % 1000
4) Query for rows where number % 1000 is equal to a random number
between 0 and 999 (this should hit the index and load a random
portion of your database)
5) You can probably then add on RANDOM() to your ORDER BY clause and
it will then just sort that chunk of your database and be 1,000x
faster.
6) Then select the first two of those rows.
If this still isn't random enough (since rows will always be paired having the same "hash"), you could probably do a union of two random rows, or have an OR clause in the query and generate two random keys.
Hopefully something along these lines could be very fast and decently random.
Related
Scenario: Medical records reporting to state government which requires a pipe delimited text file as input.
Challenge: Select hundreds of values from a fact table and produce a wide result set to be (Redshift) UNLOADed to disk.
What I have tried so far is a SQL that I want to make into a VIEW.
;WITH
CTE_patient_record AS
(
SELECT
record_id
FROM fact_patient_record
WHERE update_date = <yesterday>
)
,CTE_patient_record_item AS
(
SELECT
record_id
,record_item_name
,record_item_value
FROM fact_patient_record_item fpri
INNER JOIN CTE_patient_record cpr ON fpri.record_id = cpr.record_id
)
Note that fact_patient_record has 87M rows and fact_patient_record_item has 97M rows.
The above code runs in 2 seconds for 2 test records and the CTE_patient_record_item CTE has about 200 rows per record for a total of about 400.
Now, produce the result set:
,CTE_result AS
(
SELECT
cpr.record_id
,cpri002.record_item_value AS diagnosis_1
,cpri003.record_item_value AS diagnosis_2
,cpri004.record_item_value AS medication_1
...
FROM CTE_patient_record cpr
INNER JOIN CTE_patient_record_item cpri002 ON cpr.cpr.record_id = cpri002.cpr.record_id
AND cpri002.record_item_name = 'diagnosis_1'
INNER JOIN CTE_patient_record_item cpri003 ON cpr.cpr.record_id = cpri003.cpr.record_id
AND cpri003.record_item_name = 'diagnosis_2'
INNER JOIN CTE_patient_record_item cpri004 ON cpr.cpr.record_id = cpri004.cpr.record_id
AND cpri003.record_item_name = 'mediation_1'
...
) SELECT * FROM CTE_result
Result set looks like this:
record_id diagnosis_1 diagnosis_2 medication_1 ...
100001 09 9B 88X ...
...and then I use the Reshift UNLOAD command to write to disk pipe delimited.
I am testing this on a full production sized environment but only for 2 test records.
Those 2 test records have about 200 items each.
Processing output is 2 rows 200 columns wide.
It takes 30 to 40 minutes to process just just the 2 records.
You might ask me why I am joining on the item name which is a string. Basically there is no item id, no integer, to join on. Long story.
I am looking for suggestions on how to improve performance. With only 2 records, 30 to 40 minutes is unacceptable. What will happen when I have 1000s of records?
I have also tried making the VIEW a MATERIALIZED VIEW however, it takes 30 to 40 minutes (not surprisingly) to compile the materialized view also.
I am not sure which route to take from here.
Stored procedure? I have experience with stored procs.
Create new tables so I can create integer id's to join on and indexes? However, my managers are "new table" averse.
?
I could just stop with the first two CTEs, pull the data down to python and process using pandas dataframe which I've done before successfully but it would be nice if I could have an efficient query, just use Redshift UNLOAD and be done with it.
Any help would be appreciated.
UPDATE: Many thanks to Paul Coulson and Bill Weiner for pointing me in the right direction! (Paul I am unable to upvote your answer as I am too new here).
Using (pseudo code):
MAX(CASE WHEN t1.name = 'somename' THEN t1.value END ) AS name
...
FROM table1 t1
reduced execution time from 30 minutes to 30 seconds.
EXPLAIN PLAN for the original solution is 2700 lines long, for the new solution using conditional aggregation is 40 lines long.
Thanks guys.
Without some more information it is impossible to know what is going on for sure but what you are doing is likely not ideal. An explanation plan and the execution time per step would help a bunch.
What I suspect is getting you is that you are reading a 97M row table 200 times. This will slow things down but shouldn't take 40 min. So I also suspect that record_item_name is not unique per value of record_id. This will lead to row replication and could be expanding the data set many fold. Also is record_id unique in fact_patient_record? If not then this will cause row replication. If all of this is large enough to cause significant spill and significant network broadcasting your 40 min execution time is very plausible.
There is no need to be joining when all the data is in a single copy of the table. #PhilCoulson is correct that some sort of conditional aggregation could be applied and the decode() syntax could save you space if you don't like case. Several of the above issues that might be affecting your joins would also make this aggregation complicated. What are you looking for if there are several values for record_item_value for each record_id and record_item_name pair? I expect you have some discovery of what your data holds in your future.
I have a large database tables that contains grid references (X and Y) associated with various objects (each with a unique object identifier) as they move with time. The objects move at approximately constant speed but random directions.
The table looks something like this….
CREATE TABLE positions (
objectId INTEGER,
x_coord INTEGER,
y_coord INTEGER,
posTime TIMESTAMP);
I want to find which two objects got closest to each other and at what time.
Finding the distance between two fixes is relatively easy – simple Pythagoras for the differences between the X and Y values should do the trick.
The first problem seems to be one of volume. The grid itself is large, 100,000 possible X co-ordinates and a similar number of Y co-ordinates. For any given time period the table might contain 10,000 grid reference positions for 1000 different objects – 10 million rows in total.
That’s not in itself a large number, but I can’t think of a way of avoiding doing a ‘product query’ to compare every fix to every other fix. Doing this with 10 million rows will produce 100 million million results.
The next issue is that I’m not just interested in the closest two fixes to each other, I’m interested in the closest two fixes from different objects.
Another issue is that I need to match time as well as position – I’m not just interested in two objects that have visited the same grid square, they need to have done so at the same time.
The other point (may not be relevant) is that the items are unlikely to every occupy exactly the same location at the same time.
I’ve got as far as a simple product query with a few sample rows, but I’m not sure on my next steps. I’m beginning to think this isn’t going something I can pull off with a single SQL query (please prove me wrong) and I’m likely to have to extract the data and subject it to some procedural programming.
Any suggestions?
I’m not sure what SE forum this best suited for – database SQL? Programming? Maths?
UPDATE - Another issue to add to the complexity, the timestamping for each object and position is irregular, one item might have a position recorded at 14:10:00 and another at 14:10:01. If these two positions are right next to each other and one second apart then they may actually represent the closest position although the time don't match!
In order to reduce the number of tested combinations you should segregate them by postime using subqueries. Also, it's recommended you create an index by postime to increase performance.
create index ix1_time on positions (postime);
Since you didn't mention any specific database I assumed PostgreSQL since it's easy to use (for me). The solution should look like:
with t as (
select distinct(postime) as pt from positions
)
select *
from t,
(
select *
from (
select
a.objectid as aid, b.objectid as bid,
a.x_coord + a.y_coord + b.x_coord + b.y_coord as dist -- fix here!
from t
join positions a on a.postime = t.pt
join positions b on b.postime = t.pt
where a.objectid <> b.objectid
) x
order by dist desc
limit 1
) y;
This SQL should compare each 10000 objects against each other on by postime. It will test 10 million combinations for each different postime value, but not against other postime values.
Please note: I used a.x_coord + a.y_coord + b.x_coord + b.y_coord as the distance formula. I leave the correct one for you to implement here.
In total it will compute 10 million x 1000 time values: a total of 10 billion comparisons. It will return the closest two points for each timepos, that is a total of 1000 rows.
Let's say I want to get the last 50 records of a query that returns around 10k records, in a table with 1M records. I could do (at the computational cost of ordering):
data = MyModel.objects.filter(criteria=something).order_by('-pk')[:50]
I could also do (at the cost of 2 database hits):
# assume I don't care about new records being added between
# the two queries being executed
index = MyModel.objects.filter(criteria=something).count()
data = MyModel.objects.filter(criteria=something)[index-50:]
Which is better for just an ordinary relational database with no indexing on the criteria (eg postgres in my case; no columnar storage or anything fancy)? Most importantly, why?
Does the answer change if the table or queryset is significantly bigger (eg 100k records from a 10M row table)?
This one is going to be very slow
data = MyModel.objects.filter(criteria=something)[index-50:]
Why because it translates into
SELECT * FROM myapp_mymodel OFFEST (index-50)
You are not enforcing any ordering here, so the server is going to have to calulcate the result set and jump to the end of it and that's going to involve a lot of reading and will be very slow. Let us not forgot that count() queries aren't all that hot either.
OTH, this one is going to be fast
data = MyModel.objects.filter(criteria=something).order_by('-pk')[:50]
You are reverse ordering on the primary key and getting the first 50. And the first 50 you can fetch equally quickly with
data = MyModel.objects.filter(criteria=something).order_by('pk')[:50]
So this is what you really should be doing
data1 = MyModel.objects.filter(criteria=something).order_by('-pk')[:50]
data2 = MyModel.objects.filter(criteria=something).order_by('pk')[:50]
The cost of ordering on the primary key is very low.
I'm working with a non-profit that is mapping out solar potential in the US. Needless to say, we have a ridiculously large PostgreSQL 9 database. Running a query like the one shown below is speedy until the order by line is uncommented, in which case the same query takes forever to run (185 ms without sorting compared to 25 minutes with). What steps should be taken to ensure this and other queries run in a more manageable and reasonable amount of time?
select A.s_oid, A.s_id, A.area_acre, A.power_peak, A.nearby_city, A.solar_total
from global_site A cross join na_utility_line B
where (A.power_peak between 1.0 AND 100.0)
and A.area_acre >= 500
and A.solar_avg >= 5.0
AND A.pc_num <= 1000
and (A.fips_level1 = '06' AND A.fips_country = 'US' AND A.fips_level2 = '025')
and B.volt_mn_kv >= 69
and B.fips_code like '%US06%'
and B.status = 'active'
and ST_within(ST_Centroid(A.wkb_geometry), ST_Buffer((B.wkb_geometry), 1000))
--order by A.area_acre
offset 0 limit 11;
The sort is not the problem - in fact the CPU and memory cost of the sort is close to zero since Postgres has Top-N sort where the result set is scanned while keeping up to date a small sort buffer holding only the Top-N rows.
select count(*) from (1 million row table) -- 0.17 s
select * from (1 million row table) order by x limit 10; -- 0.18 s
select * from (1 million row table) order by x; -- 1.80 s
So you see the Top-10 sorting only adds 10 ms to a dumb fast count(*) versus a lot longer for a real sort. That's a very neat feature, I use it a lot.
OK now without EXPLAIN ANALYZE it's impossible to be sure, but my feeling is that the real problem is the cross join. Basically you're filtering the rows in both tables using :
where (A.power_peak between 1.0 AND 100.0)
and A.area_acre >= 500
and A.solar_avg >= 5.0
AND A.pc_num <= 1000
and (A.fips_level1 = '06' AND A.fips_country = 'US' AND A.fips_level2 = '025')
and B.volt_mn_kv >= 69
and B.fips_code like '%US06%'
and B.status = 'active'
OK. I don't know how many rows are selected in both tables (only EXPLAIN ANALYZE would tell), but it's probably significant. Knowing those numbers would help.
Then we got the worst case CROSS JOIN condition ever :
and ST_within(ST_Centroid(A.wkb_geometry), ST_Buffer((B.wkb_geometry), 1000))
This means all rows of A are matched against all rows of B (so, this expression is going to be evaluated a large number of times), using a bunch of pretty complex, slow, and cpu-intensive functions.
Of course it's horribly slow !
When you remove the ORDER BY, postgres just comes up (by chance ?) with a bunch of matching rows right at the start, outputs those, and stops since the LIMIT is reached.
Here's a little example :
Tables a and b are identical and contain 1000 rows, and a column of type BOX.
select * from a cross join b where (a.b && b.b) --- 0.28 s
Here 1000000 box overlap (operator &&) tests are completed in 0.28s. The test data set is generated so that the result set contains only 1000 rows.
create index a_b on a using gist(b);
create index b_b on a using gist(b);
select * from a cross join b where (a.b && b.b) --- 0.01 s
Here the index is used to optimize the cross join, and speed is ridiculous.
You need to optimize that geometry matching.
add columns which will cache :
ST_Centroid(A.wkb_geometry)
ST_Buffer((B.wkb_geometry), 1000)
There is NO POINT in recomputing those slow functions a million times during your CROSS JOIN, so store the results in a column. Use a trigger to keep them up to date.
add columns of type BOX which will cache :
Bounding Box of ST_Centroid(A.wkb_geometry)
Bounding Box of ST_Buffer((B.wkb_geometry), 1000)
add gist indexes on the BOXes
add a Box overlap test (using the && operator) which will use the index
keep your ST_Within which will act as a final filter on the rows that pass
Maybe you can just index the ST_Centroid and ST_Buffer columns... and use an (indexed) "contains" operator, see here :
http://www.postgresql.org/docs/8.2/static/functions-geometry.html
I would suggest creating an index on area_acre. You may want to take a look at the following: http://www.postgresql.org/docs/9.0/static/sql-createindex.html
I would recommend doing this sort of thing off of peak hours though because this can be somewhat intensive with a large amount of data. One thing you will have to look at as well with indexes is rebuilding them on a schedule to ensure performance over time. Again this schedule should be outside of peak hours.
You may want to take a look at this article from a fellow SO'er and his experience with database slowdowns over time with indexes: Why does PostgresQL query performance drop over time, but restored when rebuilding index
If the A.area_acre field is not indexed that may slow it down. You can run the query with EXPLAIN to see what it is doing during execution.
First off I would look at creating indexes , ensure your db is being vacuumed, increase the shared buffers for your db install, work_mem settings.
First thing to look at is whether you have an index on the field you're ordering by. If not, adding one will dramatically improve performance. I don't know postgresql that well but something similar to:
CREATE INDEX area_acre ON global_site(area_acre)
As noted in other replies, the indexing process is intensive when working with a large data set, so do this during off-peak.
I am not familiar with the PostgreSQL optimizations, but it sounds like what is happening when the query is run with the ORDER BY clause is that the entire result set is created, then it is sorted, and then the top 11 rows are taken from that sorted result. Without the ORDER BY, the query engine can just generate the first 11 rows in whatever order it pleases and then it's done.
Having an index on the area_acre field very possibly may not help for the sorting (ORDER BY) depending on how the result set is built. It could, in theory, be used to generate the result set by traversing the global_site table using an index on area_acre; in that case, the results would be generated in the desired order (and it could stop after generating 11 rows in the result). If it does not generate the results in that order (and it seems like it may not be), then that index will not help in sorting the results.
One thing you might try is to remove the "CROSS JOIN" from the query. I doubt that this will make a difference, but it's worth a test. Because a WHERE clause is involved joining the two tables (via ST_WITHIN), I believe the result is the same as an inner join. It is possible that the use of the CROSS JOIN syntax is causing the optimizer to make an undesirable choice.
Otherwise (aside from making sure indexes exist for fields that are being filtered), you could play a bit of a guessing game with the query. One condition that stands out is the area_acre >= 500. This means that the query engine is considering all rows that meet that condition. But then only the first 11 rows are taken. You could try changing it to area_acre >= 500 and area_acre <= somevalue. The somevalue is the guessing part that would need adjustment to make sure you get at least 11 rows. This, however, seems like a pretty cheesy thing to do, so I mention it with some reticence.
Have you considered creating Expression based indexes for the benefit of the hairier joins and where conditions?
I have some entries in my database, in my case Videos with a rating and popularity and other factors. Of all these factors I calculate a likelihood factor or more to say a boost factor.
So I essentially have the fields ID and BOOST.The boost is calculated in a way that it turns out as an integer that represents the percentage of how often this entry should be hit in in comparison.
ID Boost
1 1
2 2
3 7
So if I run my random function indefinitely I should end up with X hits on ID 1, twice as much on ID 2 and 7 times as much on ID 3.
So every hit should be random but with a probability of (boost / sum of boosts). So the probability for ID 3 in this example should be 0.7 (because the sum is 10. I choose those values for simplicity).
I thought about something like the following query:
SELECT id FROM table WHERE CEIL(RAND() * MAX(boost)) >= boost ORDER BY rand();
Unfortunately that doesn't work, after considering the following entries in the table:
ID Boost
1 1
2 2
It will, with a 50/50 chance, have only the 2nd or both elements to choose from randomly.
So 0.5 hit goes to the second element
And 0.5 hit goes to the (second and first) element which is chosen from randomly so so 0.25 each.
So we end up with a 0.25/0.75 ratio, but it should be 0.33/0.66
I need some modification or new a method to do this with good performance.
I also thought about storing the boost field cumulatively so I just do a range query from (0-sum()), but then I would have to re-index everything coming after one item if I change it or develop some swapping algorithm or something... but that's really not elegant and stuff.
Both inserting/updating and selecting should be fast!
Do you have any solutions to this problem?
The best use case to think of is probably advertisement delivery. "Please choose a random ad with given probability"... however i need it for another purpose but just to give you a last picture what it should do.
edit:
Thanks to kens answer i thought about the following approach:
calculate a random value from 0-sum(distinct boost)
SET #randval = (select ceil(rand() * sum(DISTINCT boost)) from test);
select the boost factor from all distinct boost factors which added up surpasses the random value
then we have in our 1st example 1 with a 0.1, 2 with a 0.2 and 7 with a 0.7 probability.
now select one random entry from all entries having this boost factor
PROBLEM: because the count of entries having one boost is always different. For example if there is only 1-boosted entry i get it in 1 of 10 calls, but if there are 1 million with 7, each of them is hardly ever returned...
so this doesnt work out :( trying to refine it.
I have to somehow include the count of entries with this boost factor ... but i am somehow stuck on that...
You need to generate a random number per row and weight it.
In this case, RAND(CHECKSUM(NEWID())) gets around the "per query" evaluation of RAND. Then simply multiply it by boost and ORDER BY the result DESC. The SUM..OVER gives you the total boost
DECLARE #sample TABLE (id int, boost int)
INSERT #sample VALUES (1, 1), (2, 2), (3, 7)
SELECT
RAND(CHECKSUM(NEWID())) * boost AS weighted,
SUM(boost) OVER () AS boostcount,
id
FROM
#sample
GROUP BY
id, boost
ORDER BY
weighted DESC
If you have wildly different boost values (which I think you mentioned), I'd also consider using LOG (which is base e) to smooth the distribution.
Finally, ORDER BY NEWID() is a randomness that would take no account of boost. It's useful to seed RAND but not by itself.
This sample was put together on SQL Server 2008, BTW
I dare to suggest straightforward solution with two queries, using cumulative boost calculation.
First, select sum of boosts, and generate some number between 0 and boost sum:
select ceil(rand() * sum(boost)) from table;
This value should be stored as a variable, let's call it {random_number}
Then, select table rows, calculating cumulative sum of boosts, and find the first row, which has cumulative boost greater than {random number}:
SET #cumulative_boost=0;
SELECT
id,
#cumulative_boost:=(#cumulative_boost + boost) AS cumulative_boost,
FROM
table
WHERE
cumulative_boost >= {random_number}
ORDER BY id
LIMIT 1;
My problem was similar: Every person had a calculated number of tickets in the final draw. If you had more tickets then you would have an higher chance to win "the lottery".
Since I didn't trust any of the found results rand() * multiplier or the one with -log(rand()) on the web I wanted to implement my own straightforward solution.
What I did and in your case would look a little bit like this:
(SELECT id, boost FROM foo) AS values
INNER JOIN (
SELECT id % 100 + 1 AS counter
FROM user
GROUP BY counter) AS numbers ON numbers.counter <= values.boost
ORDER BY RAND()
Since I don't have to run it often I don't really care about future performance and at the moment it was fast for me.
Before I used this query I checked two things:
The maximum number of boost is less than the maximum returned in the number query
That the inner query returns ALL numbers between 1..100. It might not depending on your table!
Since I have all distinct numbers between 1..100 then joining on numbers.counter <= values.boost would mean that if a row has a boost of 2 it would end up duplicated in the final result. If a row has a boost of 100 it would end up in the final set 100 times. Or in another words. If sum of boosts is 4212 which it was in my case you would have 4212 rows in the final set.
Finally I let MySql sort it randomly.
Edit: For the inner query to work properly make sure to use a large table, or make sure that the id's don't skip any numbers. Better yet and probably a bit faster you might even create a temporary table which would simply have all numbers between 1..n. Then you could simply use INNER JOIN numbers ON numbers.id <= values.boost