Algorithm for reducing GPS track data to discard redundant data? - gps

We're building a GIS interface to display GPS track data, e.g. imagine the raw data set from a guy wandering around a neighborhood on a bike for an hour. A set of data like this with perhaps a new point recorded every 5 seconds, will be large and displaying it in a browser or a handheld device will be challenging. Also, displaying every single point is usually not necessary since a user can't visually resolve that much data anyway.
So for performance reasons we are looking for algorithms that are good at 'reducing' data like this so that the number of points being displayed is reduced significantly but in such a way that it doesn't risk data mis-interpretation. For example, if our fictional bike rider stops for a drink, we certainly don't want to draw 100 lat/lon points in a cluster around the 7-Eleven.
We are aware of clustering, which is good for when looking at a bunch of disconnected points, however what we need is something that applies to tracks as described above. Thanks.

A more scientific and perhaps more math heavy solution is to use the Ramer-Douglas-Peucker algorithm to generalize your path. I used it when I studied for my Master of Surveying so it's a proven thing. :-)
Giving your path and the minimum angle you can tolerate in your path, it simplifies the path by reducing the number of points.

Typically the best way of doing that is:
Determine the minimum number of screen pixels you want between GPS points displayed.
Determine the distance represented by each pixel in the current zoom level.
Multiply answer 1 by answer 2 to get the minimum distance between coordinates you want to display.
starting from the first coordinate in the journey path, read each next coordinate until you've reached the required minimum distance from the current point. Repeat.

Related

React Native, IBECONS, RSSI value to distance conversion

How to stabilize the RSSI (Received Signal Strength Indicator) of low energy Bluetooth beacons (BLE) for more accurate distance calculation?
We are trying to develop an indoor navigation system and came across this problem where the RSSI is fluctuating so much that, the distance estimation is nowhere near the correct value. We tried using an advance average calculator but to no use,
The device is constantly getting RSSI values, how to filter them, how to get the mean value, I am completely lost, please help.
Can anyone suggest any npm library or point in the right direction, I have been searching for many days but have not gotten anywhere.
FRONT END: ReactNative BACKEND: NODEJS
In addition to the answer of #davidgyoung, we would like to point out that any filtering method is a compromise between quality of noise level reduction and the time-lag introduced by this filtration (depending on the characteristic filtering time you use in your method). As was pointed by #davidgyoung, if you take characteristic filtering period T you will get an average time-lag of about T/2.
Thus, I think the best approach to solve your problem is not to try to find the best filtering method but to make changes on the transmitter’s end itself.
First you can increase the number of signals, transmitter per second (most of the modern beacon allow to do so by using manufacturer applications and API).
Secondly, you can increase beacon's power (which is also usually one of the beacon’s settings), which usually reduces signal-to-noise ratio.
Finally, you can compare beacons from different vendors. At Navigine company we experimented and tested lots of different beacons from multiple manufacturers, and it appears that signal-to-noise ratio can significantly vary among existing manufacturers. From our side, we recommend taking a look at kontakt.io beacons (https://kontakt.io/) as an one of the recognized leaders with 5+ years experience in the area.
It is unlikely that you will find a pre-built package that will do what you want as your needs are pretty specific. You will most likely have to wtite your own filtering code.
A key challenge is to decide the parameters of your filtering, as an indoor nav use case often is impacted by time lag. If you average RSSI over 30 seconds, for example, the output of your filter will effectively give you the RSSI of where a moving object was on average 15 seconds ago. This may be inappropriate for your use case if dealing with moving objects. Reducing the averaging interval to 5 seconds might help, but still introduces time lag while reducing smoothing of noise. A filter called an Auto-Regressive Moving Average Filter might be a good choice, but I only have an implementation in Java so you would need to translate to JavaScript.
Finally, do not expect a filter to solve all your problems. Even if you smooth out the noise on the RSSI you may find that the distance estimates are not accurate enough for your use case. Make sure you understand the limits of what is possible with this technology. I wrote a deep dive on this topic here.

Using GPS, How can i detect if user on road or inside a building

I am currently developing technique to help users find a spot to park.
But i face a little problem:
if a user indicates that he is parking right now in a free spot but he is lying and he is at home right now.
How can i detect from GPS if he is inside a building or along side the road?
Thanks
You'll need map data (OpenStreetMap is free), and figure out whether the user is somewhere on that map or not. You do that by comparing GPS data to the map data.
What I do in such situations is measure the distance between the lat/lon and each road, and compare the GPS angle to that of each line. The more context information you use the more accurate you can get your results:
If the speed is 60km/h, you're probably not in a building. You're probably not on a 30km/h road either.
If you're standing still for more than 2 minutes, you're probably not in a car.
If you know the buildings, and there are only a few of them, you could check if you see a certain wifi router or not.
Basically you'll calculate a score for each road, and then pick the road with the highest score to know where you are.
Score = DistScore*DistWeight + AngleScore+AngleWeight etc.
Also, from iOS and Android you get an accuracy in meters. You can also calculate that yourself if you can access raw GPS data. Using that, you set the area that you need to scan. For example, for a high accuracy (3m), you probably don't have many roads to scan. If the accuracy is 50m, you should probably match roads that are farther away.
If accuracy is important, you should look at series of GPS data, and test if the followed route is a logical path or not.

Optaplanner CVRPTW example clarification

I am trying to understand the Optaplanner CVRPTW example and have the below questions:
Does every node require both distance and travel time to every other node? Or it just requires any one of them? Example data set does not contain both of them. I think it uses euclidean formula to calculate the distance, but how does it automatically calculate travel time?
Is it possible to use real time data (precalculated road distance data)?
Depends if the dataset is using AirLocation or RoadLocation. See docs on vehicle routing, chapter 3.
Yes, if you can hold all the data in memory. At 10k+ locations this becomes a problem because (10k)² ints require almost 2GB RAM. The goal of SegmentedRoadLocation is to scale up to 100k locations without using a lot of RAM, but generating good segmented road location has proven to be difficult.

Paraview. Volume fraction and/or mass flow rate

My goal is to achieve something that was previously asked in this site (outside from SO). In this external site the questions is unanswered, and in order to give more visibility and to try to get an answer I translate it to here:
The issue is:
I have a small simulation of particles flowing through a wire mesh structure, and I'm interested in calculating the mass flow rate and volume fraction of particles at certain cross sections. I think I understand how to calculate mass flow rate by setting up small regions and dumping particle count and velocity from that region. I assume that volume fraction works in a similar fashion, except I only need to know the size of my particles and my dump region.
What I'm wondering is this - is it possible to do these things in Paraview? I can set up planes and slices and such, but I can't seem to extract much useful information out of them.
Further on down the road, what I would like to do would be to plot contours of volume fraction at certain planes, and plot the volume fraction along the vertical axis so I can see how high the particles are piling up on top of the screen, based on particle size, wire size, etc. Can Paraview do any of this?
This is a visualization issue. I don't know how make it with Paraview. The idea is count how much particles cross the slice.
My first approach was piped: DataReader | Spherical Glyph | Slice with normal fixed handly along z axis but nothing results. Also I tried to adding the filter Surface Flow and nothing too. Probably I am piping the data in a bad way.
To see the pipelining process I add an image (focus in PlotOverLine1 and its above pipes):

GPS signal cleaning & road network matching

I'm using GPS units and mobile computers to track individual pedestrians' travels. I'd like to in real time "clean" the incoming GPS signal to improve its accuracy. Also, after the fact, not necessarily in real time, I would like to "lock" individuals' GPS fixes to positions along a road network. Have any techniques, resources, algorithms, or existing software to suggest on either front?
A few things I am already considering in terms of signal cleaning:
- drop fixes for which num. of satellites = 0
- drop fixes for which speed is unnaturally high (say, 600 mph)
And in terms of "locking" to the street network (which I hear is called "map matching"):
- lock to the nearest network edge based on root mean squared error
- when fixes are far away from road network, highlight those points and allow user to use a GUI (OpenLayers in a Web browser, say) to drag, snap, and drop on to the road network
Thanks for your ideas!
I assume you want to "clean" your data to remove erroneous spikes caused by dodgy readings. This is a basic dsp process. There are several approaches you could take to this, it depends how clever you want it to be.
At a basic level yes, you can just look for really large figures, but what is a really large figure? Yeah 600mph is fast, but not if you're in concorde. Whilst you are looking for a value which is "out of the ordinary", you are effectively hard-coding "ordinary". A better approach is to examine past data to determine what "ordinary" is, and then look for deviations. You might want to consider calculating the variance of the data over a small local window and then see if the z-score of your current data is greater than some threshold, and if so, exclude it.
One note: you should use 3 as the minimum satellites, not 0. A GPS needs at least three sources to calculate a horizontal location. Every GPS I have used includes a status flag in the data stream; less than 3 satellites is reported as "bad" data in some way.
You should also consider "stationary" data. How will you handle the pedestrian standing still for some period of time? Perhaps waiting at a crosswalk or interacting with a street vendor?
Depending on what you plan to do with the data, you may need to supress those extra data points or average them into a single point or location.
You mention this is for pedestrian tracking, but you also mention a road network. Pedestrians can travel a lot of places where a car cannot, and, indeed, which probably are not going to be on any map you find of a "road network". Most road maps don't have things like walking paths in parks, hiking trails, and so forth. Don't assume that "off the road network" means the GPS isn't getting an accurate fix.
In addition to Andrew's comments, you may also want to consider interference factors such as multipath, and how they are affected in your incoming GPS data stream, e.g. HDOPs in the GSA line of NMEA0183. In my own GPS controller software, I allow user specified rejection criteria against a range of QA related parameters.
I also tend to work on a moving window principle in this regard, where you can consider rejecting data that represents a spike based on surrounding data in the same window.
Read the posfix to see if the signal is valid (somewhere in the $GPGGA sentence if you parse raw NMEA strings). If it's 0, ignore the message.
Besides that you could look at the combination of HDOP and the number of satellites if you really need to be sure that the signal is very accurate, but in normal situations that shouldn't be necessary.
Of course it doesn't hurt to do some sanity checks on GPS signals:
latitude between -90..90;
longitude between -180..180 (or E..W, N..S, 0..90 and 0..180 if you're reading raw NMEA strings);
speed between 0 and 255 (for normal cars);
distance to previous measurement matches (based on lat/lon) matches roughly with the indicated speed;
timedifference with system time not larger than x (unless the system clock cannot be trusted or relies on GPS synchronisation :-) );
To do map matching, you basically iterate through your road segments, and check which segment is the most likely for your current position, direction, speed and possibly previous gps measurements and matches.
If you're not doing a realtime application, or if a delay in feedback is acceptable, you can even look into the 'future' to see which segment is the most likely.
Doing all that properly is an art by itself, and this space here is too short to go into it deeply.
It's often difficult to decide with 100% confidence on which road segment somebody resides. For example, if there are 2 parallel roads that are equally close to the current position it's a matter of creative heuristics.