I'm now working with a legacy database which is missing, among almost everything you'd expect from a decent SQL relational DB, any documentation or metadata. I can't make changes to the DB schema, except my local test copy, as it exists at many client sites and there's no upgrading procedures. Are there any tools that I can use to build and keep my own meta about the database? I'm looking to keep track of relationships, basic documentation about tables and columns, and references in stored procedures. There's 200+ tables and 3300+ SPs. A base autogeneration would be very helpful, particularly with the SPs. Preferably FOSS and Linux, but I will settle for win just to have something.
Not sure what you mean with "metadata", but I'm pretty happy with Liquibase.
It manages the schema in one (or more) XML files and can reverse engineer an existing database (all major ones supported).
It's Java/JDBC based and runs fine on Linux
The main purposes of Liquibase is to handle upgrades (schema migration) smoothly, so I'm not sure if this exactly what you are looking for.
Related
Me and some friends are working on a school project, and I've been looking for a way to allow us all to work and edit on the same database just like we would on a VS project through GitHub.
I've tried importing the database into an SQL Database project on VS so we could work through GitHub, but I'm not sure if VS is as effective as the actual SSMS.
It doesn't matter if it's not through GitHub, I just want to know if there is a way for us to work on a database without having to export it and then import it again.
Edit: By 'editing' I meant just working on the database overall, make changes, get data, edit tables, etc.
By 'editing' I meant just working on the database overall, make changes, get data, edit tables, etc.
The short answer is no: as of Feburary 2023 there is no established tooling (outside of experimental databases like Dolt) for distributed collaborative work on both design-and-data on an RDBMS, especially not in the SQL Server-based Microsoft/VS ecosystem.
The reason why is rooted in a reality of database-centric software development: the actual data within a database is irrelevant to working on the system that consumes and manipulates it (with exceptions[1]), this principle is what enables companies handling very sensitive data (such as medical records, etc) to get any work done: the devs work with fake, generated data that only resembles real-world data, while the real data about real people lives in a separate database that almost no-one can access but it will have the exact same design/schema as the developer's database with the fake data in.
If you want to collaborate on data and the design then the "best" approach with today's tooling in my opinion is to have a single RDBMS database in the cloud[2] like Azure SQL or Amazon RDS - but you should still have your database design/schema in source-control in an SSDT *.sqlproj project - and to not directly make design/schema changes to this database without going through SSDT - and only make data changes in this live/cloud database.
If you have collaborators that won't always be able to connect to this central single cloud-hosted database then you have a very hard problem to solve which is worthy of another question entirely (welcome to the CAP Theorem).
[1]: Exceptions like setup/config/"system" data, and seed data for bootstrapping, or data used in test-cases. Point is: designing a database for animal taxonomy doesn't require actual Latin animal species names, and designing a patient/medical database doesn't require having the real details of real people with real conditions stored in your git repository.
[2]: ugh, I hate that word
In most tutorials on database design, you are shown to create and manipulate tables via queries. Sorry for a newbie question but when using SQL Server Management Studio, why would you create a table using a query and not just using the built-in functions to create tables and add attributes to them? (eg: right-click\create table, go to design view and add columns and specify domains, indexes, keys etc...)
In any development, multiple environments are used. Development environment is used at coding stage, then QA, then Model Office/ UAT/ Production.
Using scripts ensures that changes can be promoted automatically. It also ensures that manual errors are either eliminated or kept to a minimum.
Hand coding in each environment will be expensive and error prone. Scripts make it possible to have same table structure.
I create tables using queries (and i store them in .sql files) because that way i can re-run them at later time to recreate the full database structure.
This sounds more useful while in a development/testing environment than it can be in productive, where i guess you wouldn't drop and re-create the entire database that often.
To add a reason not already mentioned - it allows the scripts to be audited / reviewed and potentially stored in a version controller or issue tracking system. This will be necessary in complex or secure scenarios especially in a fast-changing environment.
It looks more professional to write queries in tutorials :). In real life, it's simpler to alter a table through UI, but then again, you forget the SQL syntax that way. If you're not a Database Admin, it's not that important to know SQL syntax from a-z, in my opinion.
The problem: we have one application that has a portion which is used by a very small subset of the total users, and that part of the application is running off of a separate database as well. In a perfect world, the schemas of the two databases would be synced up, but such is not the case. Some migrations have been run on the smaller database, most haven't; and furthermore, there is nothing such as revision number to be able to easily identify which have and which haven't. We would like to solve this quandary for future projects. During a discussion we've come up with the following possible plan of action, and I am wondering if anyone knows of any project which has already solved this problem:
What we would like to do is create an empty database from the schema of the large fully-migrated database, and then move all of the data from the smaller non-migrated database into that empty one. If it makes things easier, it can probably be assumed for the sake of this problem specifically that no migrations have ever removed anything, only added.
Else, if there are other known solutions, I'd like to hear them as well.
You could use a schema comparison tool like Red-Gate's SQL Compare. You can synchronize the changes and not lose any data. I wrote about this and many alternative tools ranging widely in price here:
http://bertrandaaron.wordpress.com/2012/04/20/re-blog-the-cost-of-reinventing-the-wheel/
The nice thing is that most tools have trial versions. So, you can try them our for 14 days (fully functional) and only buy it if it meets your expectations. I can't speak for the other tools, but I've been using RG for years and it is a very capable and reliable tool.
(Updated 2012-06-23 to help prevent link-rot.)
Red-Gate's SQL Compare as Aaron Bertrand mentions in his answer is a very good option. However, if you are not permitted to purchase something, an option is to try something like:
1) For each database, script out all the tables, constraints, indexes, views, procedures, etc.
2) run a DIFF, and go through all the differences and make sure that the small DB can accept them. If not implement any changes (including data) necessary onto the small DB so it can accept the changes.
3) create a new empty database from the schema of the large DB
4) import the data from the small DB into the nee DB.
You could also reverse engineer your database into Visual Studio as a database project. Visual Studio Team Suite Database Edition GDR R2 (I know long name) has the capability to do a schema comparison and data comparison, but the beauty of this approach is that you get all of your database into a nice database project where you can manage change and integrate with source control. This would allow you to build from a common source and deploy consistent changes.
i remember in my previous job, i needed to do data migration. in that case, i needed to migrate to a new system, i was to develop, so it has a different table schema. i think 1st, i should know:
in general, how is data migrated (with the same schema) to a different DB engine. eg. MySQL -> MSSQL. in my case, my destination DB was MySQL and i used MySQL Migration Toolkit
i am thinking, in an enterprise app, there may be stored procedures, triggers that also need to be imported.
if table schema is different, how will i then go abt doing this? in my prev job, what i did was import data (in my case, from Access) into my destination (MySQL) leaving table structures. then use SQL to select data and manipulate as required into final destination tables.
in my case, where i dont have documentation for the old db, and the columns was not named correctly, eg. it uses say 'field1', 'field2' etc. i needed to trace from the application code what the columns mean. any better way? or sometimes, columns contain multiple values in delimited data, is reading code the only way?
I really depends, but from your question I assume you want to hear what other people do.
So here is what I do in my current project.
I have to migrate from Oracle to Oracle but to a completely different schema.
The old system was 2-tier (old client, old database) the new system is 3-tier (new client, business logic, new database). We have more than 600 tables in the new schema.
After much pondering we scraped the idea of doing a migration from old database to new database in SQL. We decided that in our case i would be much easier to go:
old database -> old client -> business logic -> new database
In the old database much of the data is stored in strange ways and the old client
mangles it in complex ways. We have access to the source code of the old client but it is a very large system.
We wrote a migration tool that sits above the old client and the business logic.
We have some SQL before and some SQL after that but the bulk of data is migrated via
old client and business logic.
The downside is that it is slow, a complete migration taking more than 190 hours in our case but otherwise it works well.
UPDATE
As far as stored procedures and triggers are concerned:
Even as we use the same DBMS in old and new system (both Oracle) the procedures and
triggers are written from scratch for the new system.
When I've performed database migrations, I've used the application instead a general tool to migrate the database. The application connects to two databases and copies objects from one to the other. You don't have to worry about schema or permissions or whatnot since all that is handled in the application, just like what happens when you set up the application in the first place.
Of course, this may not help you if your application doesn't support this. But if you're writing an application, I strongly recommend doing it this way.
I recommend the wikipedia article for a good overview and links to the main commercial tools (and some non-commercial ones). Stored procedures (and kin, e.g. user-defined function), if abundant, are going to be the "hot spots" in the migration, requiring rare abd costly human skills -- as soon as you get away from the "declarative" mood of mainstream SQL, and into procedural code, you cannot expect automated tools to do a decent job (Turing's Theorem says that they actually can't, in a sufficiently general case;-). So, you need engineers with a good understanding of the procedural trappings of BOTH engines -- the one you're migrating from, the one you're migrating to. You can buy that -- it's one of the niches where consultants make REALLY good money!-)
If you are using MS SQL Server, you can use SSMS to script out the schema and all data in one go: SQL Server 2008: Script Data as Inserts.
If you are not using any/many non-standard SQL constructs, then you might be able to manually edit this scipt without too much effort.
Please forgive my long question. I have an idea for a design that I could use some comments on. Is it a good idea to do this? And what are the pit falls I should be aware of? Are there other similar implementations that are better?
My situation is as follows:
I am working on a rewrite of a windows forms application that connects to a SQL 2008 (earlier it was SQL 2005) server. The application is an "expert-system" for an engineering company where we store structured data about constructions. We have control of all installations of the client software, we have no external customers or users, they are all internal to the company, and they are all be trusted not to do anything malicious to the software or database.
The current design doesn't have too many tables (about 10 - 20) but some of them have millions of records that belong to several hundred constructions. The systems performance has been ok so far, but it is starting to degrade as we are pushing the limits of the design.
As part of the rewrite I am considering splitting the database into one master database and several "child" databases where each describes one construction. Each child database should be of identical design. This should eliminate the performance problems we are seeing today since the data stored in each database would be less than one percent of the total data amount.
My concern is that instead of maintaining one database we will now get hundreds of databases that must be kept up to date. The system is constantly evolving as the companys requirements change (you know how it is), and while we try to look forward to reduce the number of changes the changes will come. So we will need a system where we keep track of all database changes done to the system so they can be applied to the child databases. Updating the client application won't be a problem, we have good control of that aspect.
I am thinking of a change tracing system where we store database scripts for all changes in a table in the master database. We can then give each change a version number and we can store a current version number in each child database. When the client program connects to a child database we can then check the version number of the database against the current version number of the master database and if there are patches with version numbers greater than the version number of the child database we run these and update the child database to the latest version.
As I see it this should work well. Any changes to the system will first be tested and validated before committed as a new version of the database. The change will then be applied to the database the first time a user opens it. I suppose we would open the database in exclusive mode while applying the changes, but as long as the changes aren't too frequent this should not be a problem.
So what do you think? Will this work? Have any of you done something similar? Should we scrap the solution and go for the monolithic system instead?
Have you considered partitioning your large tables by 'construction'? This could alleviate some of the growing pains by splitting the storage for the tables across files/physical devices without needing to change your application.
Adding spindles (more drives) and performing a few hours of DBA work can often be cheaper than modifying/adapting software.
Otherwise, I'd agree with #heikogerlach and these similar posts:
How do I version my ms sql database
Mechanisms for tracking DB schema changes
How do you manage databases in development, test and production?
I have a similar situation here, though I use MySQL. Every database has a versions table that contains the version (simply an integer) and a short comment of what has changed in this version. I use a script to update the databases. Every database change can be in one function or sometimes one change is made by multiple functions. Functions contain the version number in the function name. The script looks up the highest version number in a database and applies only the functions that have a higher version number in order.
This makes it easy to update databases (just add new change functions) and allows me to quickly upgrade a recovered database if necessary (just run the script again).
Even when testing the changes before this allows for defensive changes. If you make some heavy changes on a table and you want to play it safe:
def change103(...):
"Create new table."
def change104(...):
"""Transfer data from old table to new table and make
complicated changes in the process.
"""
def change105(...):
"Drop old table"
def change106(...):
"Rename new table to old table"
if in change104() is something going wrong (and throws an exception) you can simply delete the already converted data from the new table, fix your change function and run the script again.
But I don't think that changing a database dynamically when a client connects is a good idea. Sometimes changes can take some time. And the software that accesses a database should match the schema of the database. You have somehow to keep them in sync. Maybe you could distribute a new software version and then you want to upgrade the database when a client is actually starting to use this new software. But I haven't tried that.
Better don't create additional databases. At first glance you may think that you'll get some performance gain, but actually you get support nightmare. Remember - what can break, does break sooner or later.
It is way simpler to perform and optimize queries in single database. It is much easier manage user permissions in single database. It is much easier to make consistent backups for single database.
Like KenG said, if you need break your large tables - consider partitioning them. And add some drives :)
But at first run SQL profiler on your database and optimize indexes and queries. Several million rows is usually not a big problem to handle (unless your customer needs live totaling over half of these, in which case no partitioning can help).
I know that this is a crazy answer but here it goes...
I currently have a similar scenario where I need to keep control of database versions in multiple locations for a system using MS SQL Server.
What I am doing now is using Ruby on Rails ActiveRecord Migrations to keep control of database versions. Yes I know that we are talking about Windows systems but this works fine for me. (By the way, my system is programmed in VB and .NET)
I have installed Rails on each server, when I need to update the database schema I copy the migration files to the server and run rake db:migrate which updates the database to the latest version or rollbacks it to a desired version.
As a side effect you will have a set of migration files for your database schema in an database independent language (in this case ruby) that you can apply to other database engines and that you can put under source control too.
I know that this is a strange solution in which a totally different technology is used but it does not hurt to learn new approaches. You can find additional information here.
I have become a better .Net programmer since I learned Ruby on Rails. I asked here before a question about this approach.