Objective-C: override dynamic getter - objective-c

I have an NSManagedObject subclass MyClass with a property myProp, which is defined #dynamic. There are various instances of reading myProp in my code, via [myClass myProp].
Now, I want to define a getter (that returns myProp after appending something to it) for myProp, without changing the various calls to [myClass myProp]. i.e. without creating a getter that is named something other than getMyProp.
My question is, if I create a getter getMyProp, which will override the getter created by NSManagedObject, how do I access the original value that is stored in the database?

To access the underlying values of a managed object you use the following two methods:
- (id)primitiveValueForKey:(NSString *)key
- (void)setPrimitiveValue:(id)value forKey:(NSString *)key
This is often used to convert NSNumber attributes into their 'real' type, for example a bool property:
- (BOOL)isShared
{
[self willAccessValueForKey:#"isShared"];
NSNumber *underlyingValue = [self primitiveValueForKey:#"isShared"];
[self didAccessValueForKey:#"isShared"];
return [underlyingValue boolValue];
}
The willAccessValueForKey: and didAccessValueForKey: are required by the underlying managed object class for handling faults and relationships etc.
And if you do end up writing a setter, you must also wrap the accessor in KVC methods:
- (void)setShared:(BOOL)isShared
{
NSNumber *newUnderlyingValue = [NSNumber numberWithBool:isShared];
[self willChangeValueForKey:#"isShared"];
[self setPrimitiveValue:newUnderlyingValue forKey:#"isShared"];
[self didChangeValueForKey:#"isShared"];
}
Having said this, I would personally not recommend you keep the same method name unless you have a good reason. For 'derived' values you generally want to create a brand new method with a different name. It doesn't take long to do a quick find/replace throughout your code.
EDIT: added willAccessValueForKey:/didAccessValueForKey: (thanks jrturton)

Related

Call a method every time a parameter is set on Objective-C (Cocoa)

I currently have a class with 15 properties (and growing), and I'm finding myself having to call an update method every time one of those properties change.
Currently, I'm overriding every setter with a code like this:
-(void)setParameterName:(NSUInteger)newValue {
if (_param == newValue)
return;
_param = newValue;
[self redraw];
}
The method [self redraw]; being the key here.
Is there a better way to do it? Should I be using keyValue observers (the method observeValue:forKeyPath:ofObject:change:context:)?
Notes:
All properties (so far) are assign (mostly enum, NSUInteger, CGFloat and BOOL);
All those properties are set using bindings (method bind:toObject:withKeyPath:options:). Except when loading from the filesystem (which is not important, as I already call the drawing methods on every object after the loading is done);
The value changes are only for the current object. I do not need to be told when changes occur on other objects;
I have other properties that I don't need to watch the changes on it (because it will have no effect on my output and drawing the output is kinda time-consuming).
Thanks!
Since these properties are updated using bindings, which invoke -setValue:forKey:, you can override that method instead of writing custom setters:
+ (NSArray *) keysAffectingDrawing {
static NSArray *singleton;
if (!singleton)
singleton = [NSArray arrayWithObjects:
#"property1",
#"property2",
#"property3",
nil];
return singleton;
}
- (void) setValue:(id) value forKey:(NSString *) key {
[super setValue:value forKey:key];
if ([[CustomClass keysAffectingDrawing] containsObject:key]) [self redraw];
}
(I was first inclined recommend key-value observing but agree it's not the best solution here. I think the reason is in part that there's only one object, and in part because the design doesn't follow MVC. Usually in MVC an object that draws itself isn't the one with all the properties.)
(Added: Ahh, I see. The model is responsible for rendering the properties to a bitmap, and that's what -redraw does. That's fine MVC. To make it clearer, I recommend changing the name of the method from -redraw to something like -updateImage or -renderImage, since it doesn't actually do any drawing.)
You could use the Key-Value Observing to avoid repeating in all properties setter the method call, however i think that calling the method directly in the setter is not the wrong way to do it, and could even be faster ...

Objective-C pattern for class instance variables?

What would be a nice pattern in Objective-C for class variables that can be "overridden" by subclasses?
Regular Class variables are usually simulated in Objective-C using a file-local static variables together with exposed accessors defined as Class methods.
However, this, as any Class variables, means the value is shared between the class and all its subclasses. Sometimes, it's interesting for the subclass to change the value for itself only. This is typically the case when Class variables are used for configuration.
Here is an example: in some iOS App, I have many objects of a given common abstract superclass (Annotation) that come in a number of concrete variations (subclasses). All annotations are represented graphically with a label, and the label color must reflect the specific kind (subclass) of its annotation. So all Foo annotations must have a green label, and all Bar annotations must have a blue label. Storing the label color in each instance would be wasteful (and in reality, perhaps impossible as I have many objects, and actual configuration data - common to each instance - is far larger than a single color).
At runtime, the user could decide that all Foo annotations now will have a red label. And so on.
Since in Objective-C, Classes are actual objects, this calls for storing the Foo label color in the Foo class object. But is that even possible? What would be a good pattern for this kind of things? Of course, it's possible to define some sort of global dictionary mapping the class to its configuration value, but that would be kind of ugly.
Of course, it's possible to define some sort of global dictionary mapping the class to its configuration value, but that would be kind of ugly.
Why do you think this would be ugly? It is a very simple approach since you can use [self className] as the key in the dictionary. It is also easy to make it persistent since you can simply store the dictionary in NSUserDefaults (as long as it contains only property-list objects). You could also have each class default to its superclass's values by calling the superclass method until you find a class with a value.
+ (id)classConfigurationForKey:(NSString *)key {
if(_configurationDict == nil) [self loadConfigurations]; // Gets stored values
Class c = [self class];
id value = nil;
while(value == nil) {
NSDictionary *classConfig = [_configurationDict objectForKey:[c className]];
if(classConfig) {
value = [classConfig objectForKey:key];
}
c = [c superclass];
}
return value;
}
+ (void)setClassConfiguration:(id)value forKey:(NSString *)key {
if(_configurationDict == nil) [self loadConfigurations]; // Gets stored values
NSMutableDictionary *classConfig = [_configurationDict objectForKey:[self className]];
if(classConfig == nil) {
classConfig = [NSMutableDictionary dictionary];
[_configurationDict setObject:classConfig forKey:[self className]];
}
[classConfig setObject:value forKey:key];
}
This implementation provides no checking to make sure you don't go over the top superclass, so you will need to ensure that there is a value for that class to avoid an infinite loop.
If you want to store objects which can't be stored in a property list, you can use a method to convert back and forth when you access the dictionary. Here is an example for accessing the labelColor property, which is a UIColor object.
+ (UIColor *)classLabelColor {
NSData *data = [self classConfigurationForKey:#"labelColor"];
return [NSKeyedUnarchiver unarchiveObjectWithData:data];
}
+ (void)setClassLabelColor:(UIColor *)color {
NSData *data = [NSKeyedArchiver archivedDataWithRootObject:color];
[self setClassConfiguration:data forKey:#"labelColor"];
}
my answer here may help:
What is the recommended method of styling an iOS app?
in that case, your annotation just holds a reference to a style (e.g. you need only one per style), and the size of a pointer for an entire style is not bad. either way, that post may give you some ideas.
Update
Jean-Denis Muys: That addresses the sample use case of my question, but not my question itself (a pattern to simulate class instance variables).
you're right, i didn't know how closely your example modeled your problem and i considered commenting on that.
for a more general and reusable solution, i'd probably just write a threadsafe global dictionary if your global data is nontrivial (as you mentioned in your OP). you could either populate it in +initialize or lazily by introducing a class method. then you could add a few categories to NSObject to access and mutate the static data -- do this for syntactical ease.
i suppose the good thing about that approach is that you can reuse it in any program (even though it may appear ugly or complex to write). if that's too much locking, then you may want to divide dictionaries by prefixes or create a simple thread safe dictionary which your class holds a reference to -- you can then synthesize an instance variable via the objc runtime to store it and declare an instance method to access it. the class method would still have to use the global data interface directly.

Overwriting Setters for Retain Properties

Is there any way to avoid this kind of code when overwriting the default setter for a retain property?
-(void)setMasterViewController:(UIViewController *)newMaster {
[newMaster retain];
[masterViewController release];
masterViewController = newMaster;
// do custom stuff on set
}
Is there any way to access the default setter, something like:
-(void)setMasterViewController:(UIViewController *)newMaster {
[defaultSetMasterViewController:newMaster];
// do custom stuff
}
This would keep the code DRYer. The way I'm doing it currently, the fact that it's a retain property is mentioned twice.
CoreData generates primitive setters, but in general there's no such affordance. You may be able to replace custom setters with key-value observing in some cases, but the solution to your specific question is probably "use ARC" if you can limit support to 10.6+/4.3+. It will handle the retain/release stuff on your behalf.
Not really, because the setter has to perform the actual setting. You could try doing this using key-value observing if you want to keep the original setter.
However... Yes, if you're using ARC! If you have a #property (strong), then when you simply say masterViewController = newMaster ARC will use objc_storeStrong, which:
Performs the complete sequence for assigning to a __strong object of non-block type. Equivalent to the following code:
id objc_storeStrong(id *object, id value) {
value = [value retain];
id oldValue = *object;
*object = value;
[oldValue release];
return value;
}

Is it best to return NSArray or void and update self property?

I am working on a delegate class that controls several views, and find myself switching between updating properties in the delegate and returning values from methods. What is the proper way to do this?
-(NSArray)blah{
return myarray;
}
or
-(void)blah{
[self myarray:value]
}
--------------- Clarification of question below
if I have a helper method that converts an NSArray into a NSDictionary
should I call my helper method and expect a return of NSDictionary, or should I update a variable in memory and return void.
There's a case for each approach, depending on what you are really doing. The two choices are:
It is truly a helper method, that has use in many places in your application.
It is specific to a single class and the dictionary is a member of that class.
OPTION 1) If it is truly a helper method, I believe that you should return the NSDictionary from the method. I'm assuming it is newly allocated within that method.
In other words, prefer:
+ (NSDictionary *) dictFromArray:(NSArray *);
If it has utility outside of a single class, you could put it in a sensible class that collects related utility methods.
The alternative approach of passing in an empty dictionary to be filled is practiced in C because it creates symmetry around allocating and freeing and makes it clear who owns the memory.
In Objective-C, reference counting takes care of that, so you can avoid the extra code of allocating empty objects just to call the method.
For example:
NSMutableDictionary *myDict = [[NSMutableDictionary alloc] init];
dictFromArray(myArray, myDict);
When it comes to knowing who owns the object, you should stick to Objective-C conventions, where:
+ (NSDictionary *) dictFromArray:(NSArray *)array
returns an autorelease object, so the caller knows they need to retain it if they want to hold a reference.
OPTION 2) If the functionality is specific to a single class and that class has the dictionary as a member, then I would pass in the array, update the dictionary member variable using the array contents, and return void.
Something like:
- (void) setBlahFromArray:(NSArray *)array
The question is confusing as stated. If they are properties then you have accessor methods that usually include something like:
-(void) setMyValue: (NSString*) inNewValue;
-(NSString*) myValue;
but it seems like you are probably asking something else since these can be dynamically synthesized for you by the compiler... So try rephrasing the question and we'll try again to help.

What is Key-Value-Coding and Key-Value-Observing in Objective C?

Can someone explain in simple terms what is Key-Value-Coding and Key-Value-Observing? Please don't provide links to Apple Developer's reference Document. I have gone through them. I expect an explanation in very simple terms.
Key-Value-Coding (KVC) means accessing a property or value using a string.
id someValue = [myObject valueForKeyPath:#"foo.bar.baz"];
Which could be the same as:
id someValue = [[[myObject foo] bar] baz];
Key-Value-Observing (KVO) allows you to observe changes to a property or value.
To observe a property using KVO you would identify to property with a string; i.e., using KVC. Therefore, the observable object must be KVC compliant.
[myObject addObserver:self forKeyPath:#"foo.bar.baz" options:0 context:NULL];
Key Value Coding is simply accessing a property of an object through a string instead of the literal syntax.
// Here is a new instance of an object
Foo *foo = [[Foo alloc] init];
// Accessing a property called someValue with literal syntax:
[foo someValue];
// Accessing the same property with dot notation
foo.someValue;
// Accessing the same property with Key-Value coding:
[foo valueForKey:#"someValue"];
The power of KVC is that you can specify any arbitrary string at runtime (obviously this could be very dangerous too).
Key-value coding allows you to fetch or change a property of an object using a string, at runtime, instead of needing to write code that is compiled to a fixed property from the start:
NSNumber* foo = [myPopup valueForKey: #"selectedItemIndex"];
[myPopup setValue: #15 forKey: #"selectedItemIndex"];
A good example for this is NSTableView on Mac, where you can just set an identifier on every table column that corresponds to your model object's property that it should display, and then your data source just calls -valueForKey:/-setValue:forKey: with the column's identifier as the key and the values pretty much display/set themselves. You just add the right columns to the table view in the XIB.
Key-value observing was added afterwards, and lets you register to be notified about changes made to another object. You register your interest by doing:
void* gMyKVOContext = &gMyKVOContext; // global variable somewhere that guarantees us a unique address that doesn't collide with a subclass's registration for observing the same property
...
[interestingObject addObserver: interestedObject forKeyPath: #"interestingProperty" options: 0 context: gMyKVOContext];
Whenever that property is changed, -observeValueForKeyPath:ofObject:change:context: will be called on the object you specified as the observer. So you'd implement that like:
- (void)observeValueForKeyPath:(NSString *)keyPath ofObject:(id)object change:(NSDictionary *)change context:(void *)context
{
if( context == gMyKVOContext && [keyPath isEqualToString: #"interestingProperty"] )
{
// Update UI that shows interestingProperty
}
else
[super observeValueForKeyPath: keyPath ofObject: object change: change context: context];
}
The advantage here is that you get called live the moment that other property is changed. Note that objects have to do a little work so these notifications are sent, so not all properties are key-value-observable. Also note that some objects may be in an invalid state if two related properties get changed right after the other: You get notified after the first property has been changed, which now contradicts the second, and only then the second property is changed and you're notified for that. So during that first observer callback, the object may be in a weird state, so be careful how you react to that.
To make a property observable, either use the default #synthesized implementation when you define it, or if you define it yourself, implement the setter like:
-(void) setFoo: (int)inFoo
{
[self willChangeValueForKey: #"foo"];
_foo = inFoo;
[self didChangeValueForKey: #"foo"];
}
Then always go through the setter to change it, don't change _foo directly. If you have related properties that could contradict each other like the above, a good way to avoid this is to always change them both in pairs (you can't use KVC then, though). To do that, implement a combined setter like:
-(void) setFoo: (int)inFoo bar: (int)inBar
{
[self willChangeValueForKey: #"foo"];
[self willChangeValueForKey: #"bar"];
_foo = inFoo;
_bar = inBar;
[self didChangeValueForKey: #"bar"];
[self didChangeValueForKey: #"foo"];
}
That way, both notifications are sent while the properties are in proper states.
Start here.
Key-value coding is a mechanism for
accessing an object’s properties
indirectly, using strings to identify
properties, rather than through
invocation of an accessor method or
accessing them directly through
instance variables.
Objective-C Key Value Coding(KVC) vs Key Value Observing(KVO)
[Swift KVC]
KVC allows you to access to property by String it is enabled for all NSObject successors. It adds a dynamism in the language. You can consider your class as Dictionary(Key-Value). It is an alternative/not direct solution to assign/read/write variables
[valueForKey vs valueForKeyPath]
B *b = [a valueForKeyPath:#"b"];
KVC is used by KVO, as well as CoreData, Cocoa bindings...
KVO allows you to subscribe on value changed. It is working for dynamic dispatch
someClass.observe(\.v, options: .new) { (object, change) in
//logic
}
[KVO example]