Query with a UNION sub-query takes a very long time - sql

I've been having an odd problem with some queries that depend on a sub query. They run lightning fast, until I use a UNION statement in the sub query. Then they run endlessly, I've given after 10 minutes. The scenario I'm describing now isn't the original one I started with, but I think it cuts out a lot of possible problems yet yields the same problem. So even though it's a pointless query, bear with me!
I have a table:
tblUser - 100,000 rows
tblFavourites - 200,000 rows
If I execute:
SELECT COUNT(*)
FROM tblFavourites
WHERE userID NOT IN (SELECT uid FROM tblUser);
… then it runs in under a second. However, if I modify it so that the sub query has a UNION, it will run for at least 10 minutes (before I give up!)
SELECT COUNT(*)
FROM tblFavourites
WHERE userID NOT IN (SELECT uid FROM tblUser UNION SELECT uid FROM tblUser);
A pointless change, but it should yield the same result and I don't see why it should take any longer?
Putting the sub-query into a view and calling that instead has the same effect.
Any ideas why this would be? I'm using SQL Azure.
Problem solved. See my answer below.

UNION generate unique values, so the DBMS engine makes sorts.
You can use safely UNION ALL in this case.

UNION is really doing a DISTINCT on all fields in the combined data set. It filters out dupes in the final results.
Is Uid indexed? If not it may take a long time as the query engine:
Generates the first result set
Generates the second result set
Filters out all the dupes (which is half the records) in a hash table
If duplicates aren't a concern (and using IN means they won't be) then use UNION ALL which removes the expensive Sort/Filter step.

UNION's are usually implemented via temporary in-memory tables. You're essentially copying your tblUser two times into memory, WITH NO INDEX. Then every row in tblFavourites incur a complete table scan over 200,000 rows - that's 200Kx200K=40 billion double-row scans (because the query engine must get the uid from both table rows)
If your tblUser has an index on uid (which is definitely true because all tables in SQL Azure must have a clustered index), then each row in tblFavourites incurs a very fast index lookup, resulting in only 200Kxlog(100K) =200Kx17 = 200K row scans, each with 17 b-tree index comparisons (which is much faster than reading the uid from a row on a data page), so it should equate to roughly 200Kx(3-4) or 1 million double-row scans. I believe newer versions of SQL server may also build a temp hash table containing just the uid's, so essentially it gets down to 200K row scans (assuming hash table lookup to be trivial).
You should also generate your query plan to check.
Essentially, the non-UNION query runs around 500,000 times faster if tblUser has an index (should be on SQL Azure).

It turns out the problem was due to one of the indexes ... tblFavourites contained two foreign keys to the primary key (uid) in tblUser:
userId
otherUserId
both columns had the same definition and same indexes, but I discovered that swapping userId for otherUserId in the original query solved the problem.
I ran:
ALTER INDEX ALL ON tblFavourites REBUILD
... and the problem went away. The query now executes almost instantly.
I don't know too much about what goes on behind the scenes in Sql Server/Azure ... but I can only imagine that it was a damaged index or something? I update statistics frequently, but that had no effect.
Thanks!
---- UPDATE
The above was not fully correct. It did fix the problem for around 20 minutes, then it returned. I have been in touch with Microsoft support for several days and it seems the problem is to do with the tempDB. They are working on a solution at their end.

I just ran into this problem. I have about 1million rows to go through and then I realized that some of my IDs were in another table, so I unioned to get the same information in one "NOT EXISTS." I went from the query taking about 7 sec to processing only 5000 rows after a minute or so. This seemed to help. I absolutely hate the solution, but I've tried a multitude of things that all end up w/the same extremely slow execution plan. This one got me what I needed in about 18 sec.
DECLARE #PIDS TABLE ([PID] [INT] PRIMARY KEY)
INSERT INTO #PIDS SELECT DISTINCT [ID] FROM [STAGE_TABLE] WITH(NOLOCK)
INSERT INTO #PIDS SELECT DISTINCT [OTHERID] FROM [PRODUCTION_TABLE] WITH(NOLOCK)
WHERE NOT EXISTS(SELECT [PID] FROM #PIDS WHERE [PID] = [OTHERID]
SELECT (columns needed)
FROM [ORDER_HEADER] [OH] WITH(NOLOCK)
INNER JOIN #PIDS ON [OH].[SOME_ID] = [PID]
(And yes I tried "WHERE EXISTS IN..." for the final select... inner join was faster)
Please let me say again, I personaly feel this is really ugly, but I actually use this join twice in my proc, so it's going to save me time in the long run. Hope this helps.

Doesn't it make more sense to rephrase the questions from
"UserIds that aren't on the combined list of all the Ids that apper in this table and/or that table"
to
"UserIds that aren't on this table AND aren't on that table either
SELECT COUNT(*)
FROM tblFavourites
WHERE userID NOT IN (SELECT uid FROM tblUser)
AND userID NOT IN (SELECT uid FROM tblUser);

Related

how to speed up a clustered index scan while selecting all fields on range of rows or all the rows

I have a table
Books(BookId, Name, ...... , PublishedYear)
I do have about 30 fields in my Books table, where BookId is the primary key (Identity column). I have about 2 million records for this table.
I know select * is evil performance killer..
I have a situation to select range of rows or all the rows having all the columns in it.
Select * from Books;
this query takes more than 2 seconds to scan through the data page and get all the records. On checking the execution it still uses the Clustered index scan.
Obviously 2 seconds my not be that bad, however when this table has to be joined with other tables which is executed in batch is taking time over 15 minutes (There are no duplicate records though on the final result at completion as the count is matching). The join criteria is pretty simple and yields no duplication.
Excluding this table alone has the batch execution completed in sub seconds.
Is there a way to optimize this having said that I will have to select all the columns :(
Thanks in advance.
I've just run a batch against my developer instance, one SELECT specifying all Columns and one using *. There is no evidence (nor should there) that there is any difference aside from the raw parsing of my input. If I remember correctly, that old saying really means: Do not SELECT columns you are not using, they use up resources without benefit.
When you try to improve performance in your code, always check your assumptions, they might only apply to some older version (of sql server etc) or other method.

DELETE SQL with correlated subquery for table with 42 million rows?

I have a table cats with 42,795,120 rows.
Apparently this is a lot of rows. So when I do:
/* owner_cats is a many-to-many join table */
DELETE FROM cats
WHERE cats.id_cat IN (
SELECT owner_cats.id_cat FROM owner_cats
WHERE owner_cats.id_owner = 1)
the query times out :(
(edit: I need to increase my CommandTimeout value, default is only 30 seconds)
I can't use TRUNCATE TABLE cats because I don't want to blow away cats from other owners.
I'm using SQL Server 2005 with "Recovery model" set to "Simple."
So, I thought about doing something like this (executing this SQL from an application btw):
DELETE TOP (25) PERCENT FROM cats
WHERE cats.id_cat IN (
SELECT owner_cats.id_cat FROM owner_cats
WHERE owner_cats.id_owner = 1)
DELETE TOP(50) PERCENT FROM cats
WHERE cats.id_cat IN (
SELECT owner_cats.id_cat FROM owner_cats
WHERE owner_cats.id_owner = 1)
DELETE FROM cats
WHERE cats.id_cat IN (
SELECT owner_cats.id_cat FROM owner_cats
WHERE owner_cats.id_owner = 1)
My question is: what is the threshold of the number of rows I can DELETE in SQL Server 2005?
Or, if my approach is not optimal, please suggest a better approach. Thanks.
This post didn't help me enough:
SQL Server Efficiently dropping a group of rows with millions and millions of rows
EDIT (8/6/2010):
Okay, I just realized after reading the above link again that I did not have indexes on these tables. Also, some of you have already pointed out that issue in the comments below. Keep in mind this is a fictitious schema, so even id_cat is not a PK, because in my real life schema, it's not a unique field.
I will put indexes on:
cats.id_cat
owner_cats.id_cat
owner_cats.id_owner
I guess I'm still getting the hang of this data warehousing, and obviously I need indexes on all the JOIN fields right?
However, it takes hours for me to do this batch load process. I'm already doing it as a SqlBulkCopy (in chunks, not 42 mil all at once). I have some indexes and PKs. I read the following posts which confirms my theory that the indexes are slowing down even a bulk copy:
SqlBulkCopy slow as molasses
What’s the fastest way to bulk insert a lot of data in SQL Server (C# client)
So I'm going to DROP my indexes before the copy and then re CREATE them when it's done.
Because of the long load times, it's going to take me awhile to test these suggestions. I'll report back with the results.
UPDATE (8/7/2010):
Tom suggested:
DELETE
FROM cats c
WHERE EXISTS (SELECT 1
FROM owner_cats o
WHERE o.id_cat = c.id_cat
AND o.id_owner = 1)
And still with no indexes, for 42 million rows, it took 13:21 min:sec versus 22:08 with the way described above. However, for 13 million rows, took him 2:13 versus 2:10 my old way. It's a neat idea, but I still need to use indexes!
Update (8/8/2010):
Something is terribly wrong! Now with the indexes on, my first delete query above took 1:9 hrs:min (yes an hour!) versus 22:08 min:sec and 13:21 min:sec versus 2:10 min:sec for 42 mil rows and 13 mil rows respectively. I'm going to try Tom's query with the indexes now, but this is heading in the wrong direction. Please help.
Update (8/9/2010):
Tom's delete took 1:06 hrs:min for 42 mil rows and 10:50 min:sec for 13 mil rows with indexes versus 13:21 min:sec and 2:13 min:sec respectively. Deletes are taking longer on my database when I use indexes by an order of magnitude! I think I know why, my database .mdf and .ldf grew from 3.5 GB to 40.6 GB during the first (42 mil) delete! What am I doing wrong?
Update (8/10/2010):
For lack of any other options, I have come up with what I feel is a lackluster solution (hopefully temporary):
Increase timeout for database connection to 1 hour (CommandTimeout=60000; default was 30 sec)
Use Tom's query: DELETE FROM WHERE EXISTS (SELECT 1 ...) because it performed a little faster
DROP all indexes and PKs before running delete statement (???)
Run DELETE statement
CREATE all indexes and PKs
Seems crazy, but at least it's faster than using TRUNCATE and starting over my load from the beginning with the first owner_id, because one of my owner_id takes 2:30 hrs:min to load versus 17:22 min:sec for the delete process I just described with 42 mil rows. (Note: if my load process throws an exception, I start over for that owner_id, but I don't want to blow away previous owner_id, so I don't want to TRUNCATE the owner_cats table, which is why I'm trying to use DELETE.)
Anymore help would still be appreciated :)
There is no practical threshold. It depends on what your command timeout is set to on your connection.
Keep in mind that the time it takes to delete all of these rows is contingent upon:
The time it takes to find the rows of interest
The time it takes to log the transaction in the transaction log
The time it takes to delete the index entries of interest
The time it takes to delete the actual rows of interest
The time it takes to wait for other processes to stop using the table so you can acquire what in this case will most likely be an exclusive table lock
The last point may often be the most significant. Do an sp_who2 command in another query window to make sure that there isn't lock contention going on, preventing your command from executing.
Improperly configured SQL Servers will do poorly at this type of query. Transaction logs which are too small and/or share the same disks as the data files will often incur severe performance penalties when working with large rows.
As for a solution, well, like all things, it depends. Is this something you intend to be doing often? Depending on how many rows you have left, the fastest way might be to rebuild the table as another name and then rename it and recreate its constraints, all inside a transaction. If this is just an ad-hoc thing, make sure your ADO CommandTimeout is set high enough and you can just bear the cost of this big delete.
If the delete will remove "a significant number" of rows from the table, this can be an alternative to a DELETE: put the records to keep somewhere else, truncate the original table, put back the 'keepers'. Something like:
SELECT *
INTO #cats_to_keep
FROM cats
WHERE cats.id_cat NOT IN ( -- note the NOT
SELECT owner_cats.id_cat FROM owner_cats
WHERE owner_cats.id_owner = 1)
TRUNCATE TABLE cats
INSERT INTO cats
SELECT * FROM #cats_to_keep
Have you tried no Subquery and use a join instead?
DELETE cats
FROM
cats c
INNER JOIN owner_cats oc
on c.id_cat = oc.id_cat
WHERE
id_owner =1
And if you have have you also tried different Join hints e.g.
DELETE cats
FROM
cats c
INNER HASH JOIN owner_cats oc
on c.id_cat = oc.id_cat
WHERE
id_owner =1
If you use an EXISTS rather than an IN, you should get much better performance. Try this:
DELETE
FROM cats c
WHERE EXISTS (SELECT 1
FROM owner_cats o
WHERE o.id_cat = c.id_cat
AND o.id_owner = 1)
There's no threshold as such - you can DELETE all the rows from any table given enough transaction log space - which is where your query is most likely falling over. If you're getting some results from your DELETE TOP (n) PERCENT FROM cats WHERE ... then you can wrap it in a loop as below:
SELECT 1
WHILE ##ROWCOUNT <> 0
BEGIN
DELETE TOP (somevalue) PERCENT FROM cats
WHERE cats.id_cat IN (
SELECT owner_cats.id_cat FROM owner_cats
WHERE owner_cats.id_owner = 1)
END
As others have mentioned, when you delete 42 million rows, the db has to log 42 million deletions against the database. Thus, the transaction log has to grow substantially. What you might try is to break up the delete into chunks. In the following query, I use the NTile ranking function to break up the rows into 100 buckets. If that is too slow, you can expand the number of buckets so that each delete is smaller. It will help tremendously if there is an index on owner_cats.id_owner, owner_cats.id_cats and cats.id_cat (which I assumed the primary key and numeric).
Declare #Cats Cursor
Declare #CatId int --assuming an integer PK here
Declare #Start int
Declare #End int
Declare #GroupCount int
Set #GroupCount = 100
Set #Cats = Cursor Fast_Forward For
With CatHerd As
(
Select cats.id_cat
, NTile(#GroupCount) Over ( Order By cats.id_cat ) As Grp
From cats
Join owner_cats
On owner_cats.id_cat = cats.id_cat
Where owner_cats.id_owner = 1
)
Select Grp, Min(id_cat) As MinCat, Max(id_cat) As MaxCat
From CatHerd
Group By Grp
Open #Cats
Fetch Next From #Cats Into #CatId, #Start, #End
While ##Fetch_Status = 0
Begin
Delete cats
Where id_cat Between #Start And #End
Fetch Next From #Cats Into #CatId, #Start, #End
End
Close #Cats
Deallocate #Cats
The notable catch with the above approach is that it is not transactional. Thus, if it fails on the 40th chunk, you will have deleted 40% of the rows and the other 60% will still exist.
Might be worth trying MERGE e.g.
MERGE INTO cats
USING owner_cats
ON cats.id_cat = owner_cats.id_cat
AND owner_cats.id_owner = 1
WHEN MATCHED THEN DELETE;
<Edit> (9/28/2011)
My answer performs basically the same way as Thomas' solution (Aug 6 '10). I missed it when I posted my answer because it he uses an actual CURSOR so I thought to myself "bad" because of the # of records involved. However, when I reread his answer just now I realize that the WAY he uses the cursor is actually "good". Very clever. I just voted up his answer and will probably use his approach in the future. If you don't understand why, take a look at it again. If you still can't see it, post a comment on this answer and I will come back and try to explain in detail. I decided to leave my answer because someone may have a DBA who refuses to let them use an actual CURSOR regardless of how "good" it is. :-)
</Edit>
I realize that this question is a year old but I recently had a similar situation. I was trying to do "bulk" updates to a large table with a join to a different table, also fairly large. The problem was that the join was resulting in so many "joined records" that it took too long to process and could have led to contention problems. Since this was a one-time update I came up with the following "hack." I created a WHILE LOOP that went through the table to be updated and picked 50,000 records to update at a time. It looked something like this:
DECLARE #RecId bigint
DECLARE #NumRecs bigint
SET #NumRecs = (SELECT MAX(Id) FROM [TableToUpdate])
SET #RecId = 1
WHILE #RecId < #NumRecs
BEGIN
UPDATE [TableToUpdate]
SET UpdatedOn = GETDATE(),
SomeColumn = t2.[ColumnInTable2]
FROM [TableToUpdate] t
INNER JOIN [Table2] t2 ON t2.Name = t.DBAName
AND ISNULL(t.PhoneNumber,'') = t2.PhoneNumber
AND ISNULL(t.FaxNumber, '') = t2.FaxNumber
LEFT JOIN [Address] d ON d.AddressId = t.DbaAddressId
AND ISNULL(d.Address1,'') = t2.DBAAddress1
AND ISNULL(d.[State],'') = t2.DBAState
AND ISNULL(d.PostalCode,'') = t2.DBAPostalCode
WHERE t.Id BETWEEN #RecId AND (#RecId + 49999)
SET #RecId = #RecId + 50000
END
Nothing fancy but it got the job done. Because it was only processing 50,000 records at a time, any locks that got created were short lived. Also, the optimizer realized that it did not have to do the entire table so it did a better job of picking an execution plan.
<Edit> (9/28/2011)
There is a HUGE caveat to the suggestion that has been mentioned here more than once and is posted all over the place around the web regarding copying the "good" records to a different table, doing a TRUNCATE (or DROP and reCREATE, or DROP and rename) and then repopulating the table.
You cannot do this if the table is the PK table in a PK-FK relationship (or other CONSTRAINT). Granted, you could DROP the relationship, do the clean up, and re-establish the relationship, but you would have to clean up the FK table, too. You can do that BEFORE re-establishing the relationship, which means more "down-time", or you can choose to not ENFORCE the CONSTRAINT on creation and clean up afterwards. I guess you could also clean up the FK table BEFORE you clean up the PK table. Bottom line is that you have to explicitly clean up the FK table, one way or the other.
My answer is a hybrid SET-based/quasi-CURSOR process. Another benefit of this method is that if the PK-FK relationship is setup to CASCADE DELETES you don't have to do the clean up I mention above because the server will take care of it for you. If your company/DBA discourage cascading deletes, you can ask that it be enabled only while this process is running and then disabled when it is finished. Depending on the permission levels of the account that runs the clean up, the ALTER statements to enable/disable cascading deletes can be tacked onto the beginning and the end of the SQL statement.
</Edit>
Bill Karwin's answer to another question applies to my situation also:
"If your DELETE is intended to eliminate a great majority of the rows in that table, one thing that people often do is copy just the rows you want to keep to a duplicate table, and then use DROP TABLE or TRUNCATE to wipe out the original table much more quickly."
Matt in this answer says it this way:
"If offline and deleting a large %, may make sense to just build a new table with data to keep, drop the old table, and rename."
ammoQ in this answer (from the same question) recommends (paraphrased):
issue a table lock when deleting a large amount of rows
put indexes on any foreign key columns

Performance: Subquery or Joining

I got a little question about performance of a subquery / joining another table
INSERT
INTO Original.Person
(
PID, Name, Surname, SID
)
(
SELECT ma.PID_new , TBL.Name , ma.Surname, TBL.SID
FROM Copy.Person TBL , original.MATabelle MA
WHERE TBL.PID = p_PID_old
AND TBL.PID = MA.PID_old
);
This is my SQL, now this thing runs around 1 million times or more.
My question is what would be faster?
If I change TBL.SID to (Select new from helptable where old = tbl.sid)
OR
If I add the 'HelpTable' to the from and do the joining in the where?
edit1
Well, this script runs only as much as there r persons.
My program has 2 modules one that populates MaTabelle and one that transfers data. This program does merge 2 databases together and coz of this, sometimes the same Key is used.
Now I'm working on a solution that no duplicate Keys exists.
My solution is to make a 'HelpTable'. The owner of the key(SID) generates a new key and writes it into a 'HelpTable'. All other tables that use this key can read it from the 'HelpTable'.
edit2
Just got something in my mind:
if a table as a Key that can be null(foreignkey that is not linked)
then this won't work with the from or?
Modern RDBMs, including Oracle, optimize most joins and sub queries down to the same execution plan.
Therefore, I would go ahead and write your query in the way that is simplest for you and focus on ensuring that you've fully optimized your indexes.
If you provide your final query and your database schema, we might be able to offer detailed suggestions, including information regarding potential locking issues.
Edit
Here are some general tips that apply to your query:
For joins, ensure that you have an index on the columns that you are joining on. Be sure to apply an index to the joined columns in both tables. You might think you only need the index in one direction, but you should index both, since sometimes the database determines that it's better to join in the opposite direction.
For WHERE clauses, ensure that you have indexes on the columns mentioned in the WHERE.
For inserting many rows, it's best if you can insert them all in a single query.
For inserting on a table with a clustered index, it's best if you insert with incremental values for the clustered index so that the new rows are appended to the end of the data. This avoids rebuilding the index and often avoids locks on the existing records, which would slow down SELECT queries against existing rows. Basically, inserts become less painful to other users of the system.
Joining would be much faster than a subquery
The main difference betwen subquery and join is
subquery is faster when we have to retrieve data from large number of tables.Because it becomes tedious to join more tables.
join is faster to retrieve data from database when we have less number of tables.
Also, this joins vs subquery can give you some more info
Instead of focussing on whether to use join or subquery, I would focus on the necessity of doing 1,000,000 executions of that particular insert statement. Especially as Oracle's optimizer -as Marcus Adams already pointed out- will optimize and rewrite your statements under the covers to its most optimal form.
Are you populating MaTabelle 1,000,000 times with only a few rows and issue that statement? If yes, then the answer is to do it in one shot. Can you provide some more information on your process that is executing this statement so many times?
EDIT: You indicate that this insert statement is executed for every person. In that case the advice is to populate MATabelle first and then execute once:
INSERT
INTO Original.Person
(
PID, Name, Surname, SID
)
(
SELECT ma.PID_new , TBL.Name , ma.Surname, TBL.SID
FROM Copy.Person TBL , original.MATabelle MA
WHERE TBL.PID = MA.PID_old
);
Regards,
Rob.

Slow query with unexpected index scan

I have this query:
SELECT *
FROM sample
INNER JOIN test ON sample.sample_number = test.sample_number
INNER JOIN result ON test.test_number = result.test_number
WHERE sampled_date BETWEEN '2010-03-17 09:00' AND '2010-03-17 12:00'
the biggest table here is RESULT, contains 11.1M records. The left 2 tables about 1M.
this query works slowly (more than 10 minutes) and returns about 800 records. executing plan shows clustered index scan (over it's PRIMARY KEY (result.result_number, which actually doesn't take part in query)) over all 11M records.
RESULT.TEST_NUMBER is a clustered primary key.
if I change 2010-03-17 09:00 to 2010-03-17 10:00 - i get about 40 records. it executes for 300ms. and plan shows index seek (over result.test_number index)
if i replace * in SELECT clause to result.test_number (covered with index) - then all become fast in first case too. this points to hdd IO issues, but doesn't clarifies changing plan.
so, any ideas?
UPDATE:
sampled_date is in table sample and covered by index.
other fields from this query: test.sample_number is covered by index and result.test_number too.
UPDATE 2:
obviously than sql server in any reasons don't want to use index.
i did a small experiment: i remove INNER JOIN with result, select all test.test_number and after that do
SELECT * FROM RESULT WHERE TEST_NUMBER IN (...)
this, of course, works fast. but i cannot get what is the difference and why query optimizer choose such inappropriate way to select data in 1st case.
UPDATE 3:
after backing up database and restoring to database with new name - both requests work fast as expected even on much more ranges...
so - are there any special commands to clean or optimize, whatever, that can be relevant to this? :-(
A couple things to try:
Update statistics
Add hints to the query about what index to use (in SQL Server you might say WITH (INDEX(myindex)) after specifying a table)
EDIT: You noted that copying the database made it work, which tells me that the index statistics were out of date. You can update them with something like UPDATE STATISTICS mytable on a regular basis.
Use EXEC sp_updatestats to update the whole database.
The first thing I would do is specify the exact columns I want, and see if the problems persists. I doubt you would need all the columns from all three tables.
It sounds like it has trouble getting all the rows out of the result table. How big is a row? Look at how big all the data in the table is and divide it by the number of rows. Right click on the table -> properties..., Storage tab.
Try putting where clause into a subquery to force it to do that first?
SELECT *
FROM
(SELECT * FROM sample
WHERE sampled_date
BETWEEN '2010-03-17 09:00' AND '2010-03-17 12:00') s
INNER JOIN test ON s.sample_number = test.sample_number
INNER JOIN result ON test.test_number = result.test_number
OR this might work better if you expect a small number of samples
SELECT *
FROM sample
INNER JOIN test ON sample.sample_number = test.sample_number
INNER JOIN result ON test.test_number = result.test_number
WHERE sample.sample_ID in (
SELECT sample_ID
FROM sample
WHERE sampled_date BETWEEN '2010-03-17 09:00' AND '2010-03-17 12:00'
)
If you do a SELECT *, you want all the data from the table. The data for the table is in the clustered index - the leaf nodes of the clustered index are the data pages.
So if you want all of those data pages anyway, and since you're joining 1 mio. rows to 11 mio. rows (1 out of 11 isn't very selective for SQL Server), using an index to find the rows, and then do bookmark lookups into the actual data pages for each of those rows found, might just not be very efficient, and thus SQL Server uses the clustered index scan instead.
So to make a long story short: only select those rows you really need! You thus give SQL Server a chance to use an index, do a seek there, and find the necessary data.
If you only select three, four columns, then the chances that SQL Server will find and use an index that contains those columns are just so much higher than if you ask for all the data from all the tables involved.
Another option would be to try and find a way to express a subquery, using e.g. a Common Table Expression, that would grab data from the two smaller tables, and reduce that number of rows even more, and join the hopefully quite small result against the main table. If you have a small result set of only 40 or 800 results (rather than two tables with 1 mio. rows each), then SQL Server might be more inclined to use a Clustered Index Seek and do bookmark lookups on 40 or 800 rows, rather than doing a full Clustered Index Scan.

Slow distinct query in SQL Server over large dataset

We're using SQL Server 2005 to track a fair amount of constantly incoming data (5-15 updates per second). We noticed after it has been in production for a couple months that one of the tables has started to take an obscene amount of time to query.
The table has 3 columns:
id -- autonumber (clustered)
typeUUID -- GUID generated before the insert happens; used to group the types together
typeName -- The type name (duh...)
One of the queries we run is a distinct on the typeName field:
SELECT DISTINCT [typeName] FROM [types] WITH (nolock);
The typeName field has a non-clusted, non-unique ascending index on it. The table contains approximately 200M records at the moment. When we run this query, the query took 5m 58s to return! Perhaps we're not understanding how the indexes work... But I didn't think we mis-understood them that much.
To test this a little further, we ran the following query:
SELECT DISTINCT [typeName] FROM (SELECT TOP 1000000 [typeName] FROM [types] WITH (nolock)) AS [subtbl]
This query returns in about 10 seconds, as I would expect, it's scanning the table.
Is there something we're missing here? Why does the first query take so long?
Edit: Ah, my apologies, the first query returns 76 records, thank you ninesided.
Follow up: Thank you all for your answers, it makes more sense to me now (I don't know why it didn't before...). Without an index, it's doing a table scan across 200M rows, with an index, it's doing an index scan across 200M rows...
SQL Server does prefer the index, and it does give a little bit of a performance boost, but nothing to be excited about. Rebuilding the index did take the query time down to just over 3m instead of 6m, an improvement, but not enough. I'm just going to recommend to my boss that we normalize the table structure.
Once again, thank you all for your help!!
You do misunderstand the index. Even if it did use the index it would still do an index scan across 200M entries. This is going to take a long time, plus the time it takes to do the DISTINCT (causes a sort) and it's a bad thing to run. Seeing a DISTINCT in a query always raises a red flag and causes me to double check the query. In this case, perhaps you have a normalization issue?
There is an issue with the SQL Server optimizer when using the DISTINCT keyword. The solution was to force it to keep the same query plan by breaking out the distinct query separately.
So we took queries such as:
SELECT DISTINCT [typeName] FROM [types] WITH (nolock);
and break it up into the following:
SELECT typeName INTO #tempTable1 FROM types WITH (NOLOCK)
SELECT DISTINCT typeName FROM #tempTable1
Another way to get around it is to use a GROUP BY, which gets a different optimization plan.
I doubt SQL Server will even try to use the index, it'd have to do practically the same amount of work (given the narrow table), reading all 200M rows regardless of whether it looks at the table or the index. If the index on typeName was clustered it may reduce the time taken as it shouldn't need to sort before grouping.
If the cardinality of your types is low, how about maintaining a summary table which holds the list of distinct type values? A trigger on insert/update of the main table would do a check on the summary table and insert a new record when a new type is found.
As others have already pointed out - when you do a SELECT DISTINCT (typename) over your table, you'll end up with a full table scan no matter what.
So it's really a matter of limiting the number of rows that need to be scanned.
The question is: what do you need your DISTINCT typenames for? And how many of your 200M rows are distinct? Do you have only a handful (a few hundred at most) distinct typenames??
If so - you could have a separate table DISTINCT_TYPENAMES or something and fill those initially by doing a full table scan, and then on inserting new rows to the main table, just always check whether their typename is already in DISTINCT_TYPENAMES, and if not, add it.
That way, you'd have a separate, small table with just the distinct TypeName entries, which would be lightning fast to query and/or to display.
Marc
A looping approach should use multiple seeks (but loses some parallelism). It might be worth a try for cases with relatively few distinct values compared to the total number of rows (low cardinality).
Idea was from this question:
select typeName into #Result from Types where 1=0;
declare #t varchar(100) = (select min(typeName) from Types);
while #t is not null
begin
set #t = (select top 1 typeName from Types where typeName > #t order by typeName);
if (#t is not null)
insert into #Result values (#t);
end
select * from #Result;
And looks like there are also some other methods (notably the recursive CTE #Paul White):
different-ways-to-find-distinct-values-faster-methods
sqlservercentral Topic873124-338-5
My first thought is statistics. To find last updated:
SELECT
name AS index_name,
STATS_DATE(object_id, index_id) AS statistics_update_date
FROM
sys.indexes
WHERE
object_id = OBJECT_ID('MyTable');
Edit: Stats are updated when indexes are rebuilt, which I see are not maintained
My second thought is that is the index still there? The TOP query should still use an index.
I've just tested on one of my tables with 57 million rows and both use the index.
An indexed view can make this faster.
create view alltypes
with schemabinding as
select typename, count_big(*) as kount
from dbo.types
group by typename
create unique clustered index idx
on alltypes (typename)
The work to keep the view up to date on each change to the base table should be moderate (depending on your application, of course -- my point is that it doesn't have to scan the whole table each time or do anything insanely expensive like that.)
Alternatively you could make a small table holding all values:
select distinct typename
into alltypes
from types
alter table alltypes
add primary key (typename)
alter table types add foreign key (typename) references alltypes
The foreign key will make sure that all values used appear in the parent alltypes table. The trouble is in ensuring that alltypes does not contain values not used in the child types table.
I should try something like this:
SELECT typeName FROM [types] WITH (nolock)
group by typeName;
And like other i would say you need to normalize that column.
An index helps you quickly find a row. But you're asking the database to list all unique types for the entire table. An index can't help with that.
You could run a nightly job which runs the query and stores it in a different table. If you require up-to-date data, you could store the last ID included in the nightly scan, and combine the results:
select type
from nightlyscan
union
select distinct type
from verybigtable
where rowid > lastscannedid
Another option is to normalize the big table into two tables:
talbe1: id, guid, typeid
type table: typeid, typename
This would be very beneficial if the number of types was relatively small.
I could be missing something but would it be more efficient if an overhead on load to create a view with distinct values and query that instead?
This would give almost instant responses to the select if the result set is significantly smaller with the overhead over populating it on each write though given the nature of the view that might be trivial in itself.
It does ask the question how many writes compared to how often you want the distinct and the importance of the speed when you do.