What effect on memory usage do categories have? - objective-c

Does adding a method to an Objective-C class as a category have any effect on that class's memory usage?

The impact of a category on the class
The Objective-C runtime ultimately honors your category methods by producing a class hierarchy for your instance which includes the category. The instances of a class implementing a category won't be more expensive or demanding of memory than an additional subclass would have been. Category methods are applied at runtime, but once the method is added to the class, it will be no different from the methods defined on that class. The machinery for message sending between these objects will all be the same.
Categories are more about code design and separation of concerns. You can simply use them in step with established Cocoa patterns as a tool to help you design your classes, rather than thinking in terms of memory optimizations.
The overall impact of categories on the runtime environment
#NSResponder reminds me of a further good point. Because categories are loaded at run-time, they won't be loaded until they are used. A really large class or a class cluster might include code for higher level frameworks in a separate category. If you avoid the higher-level framework altogether, you'll never have to load the categories it adds. For example, a class may work fine in a Foundation layer, and then load extra functionality when it's used from a Cocoa layer. So this can be thought of as saving space, and that's a good answer for the picture at large.
Still, if you are simply writing some classes, this shouldn't be your primary means for optimizing memory yourself. Unless you are writing a large body of code which spans multiple layers, you are typically declaring categories in order to make use of them yourself or to make them available for some other object to use. Objective-C and the Cocoa frameworks have good machinery for lazily loading bundles of code, which serves this purpose well.

The benefit of categories for memory footprint is that the app won't load a category until you use it. The canonical example of this back in the NeXTSTEP days was to put a view's printing code in a category.

Related

extending objects at run-time via categories?

Objective-C’s objects are pretty flexible when compared to similar languages like C++ and can be extended at runtime via Categories or through runtime functions.
Any idea what this sentence means? I am relatively new to Objective-C
While technically true, it may be confusing to the reader to call category extension "at runtime." As Justin Meiners explains, categories allow you to add additional methods to an existing class without requiring access to the existing class's source code. The use of categories is fairly common in Objective-C, though there are some dangers. If two different categories add the same method to the same class, then the behavior is undefined. Since you cannot know whether some other part of the system (perhaps even a system library) adds a category method, you typically must add a prefix to prevent collisions (for example rather than swappedString, a better name would likely be something like rnc_swappedString if this were part of RNCryptor for instance.)
As I said, it is technically true that categories are added at runtime, but from the programmer's point of view, categories are written as though just part of the class, so most people think of them as being a compile-time choice. It is very rare to decide at runtime whether to add a category method or not.
As a beginner, you should be aware of categories, but slow to create new ones. Creating categories is a somewhat intermediate-level skill. It's not something to avoid, but not something you'll use every day. It's very easy to overuse them. See Justin's link for more information.
On the other hand, "runtime functions" really do add new functionality to existing classes or even specific objects at runtime, and are completely under the control of code. You can, at runtime, modify a class such that it responds to a method it didn't previously respond to. You can even generate entirely new classes at runtime that did not exist when the program was compiled, and you can change the class of existing objects. (This is exactly how Key-Value Observation is implemented.)
Modifying classes and objects using the runtime is an advanced skill. You should not even consider using these techniques in production code until you have significant experience. And when you have that experience, it will tell you that you very seldom what to do this anyway. You will know the runtime functions because they are C-based, with names like method_exchangeImplmentations. You won't mistake them for normal ObjC (and you generally have to import objc/runtime.h to get to them.)
There is a middle-ground that bleeds into runtime manipulation called message forwarding and dynamic message resolution. This is often used for proxy objects, and is implemented with -forwardingTargetForSelector, +resolveInstanceMethod, and some similar methods. These are tools that allow classes to modify themselves at runtime, and is much less dangerous than modifying other classes (i.e. "swizzling").
It's also important to consider how all of this translates to Swift. In general, Swift has discouraged and restricted the use of runtime class manipulation, but it embraces (and improves) category-like extensions. By the time you're experienced enough to dig into the runtime, you will likely find it an even more obscure skill than it is today. But you will use extensions (Swift's version of categories) in every program.
A category allows you to add functionality to an existing class that you do not have access to source code for (System frameworks, 3rd party APIs etc). This functionality is possible by adding methods to a class at runtime.
For example lets say I wanted to add a method to NSString that swapped uppercase and lowercase letters called -swappedString. In static languages (such as C++), extending classes like this is more difficult. I would have to create a subclass of NSString (or a helper function). While my own code could take advantage of my subclass, any instance created in a library would not use my subclass and would not have my method.
Using categories I can extend any class, such as adding a -swappedString method and use it on any instance of the class, such asNSString transparently [anyString swappedString];.
You can learn more details from Apple's Docs

Whether to put method code in a VB.Net data storage class, or put it in a separate class?

TLDR summary: (a) Should I include (lengthy) method code in classes which may spawn multiple objects at runtime, (b) does doing so cause memory usage bloat, (c) if so should I "outsource" the code to a class that is loaded only once and have the class methods call that, or alternatively (d) does the code get loaded only once with the object definition anyway and I'm worrying about nothing?
........
I don't know whether there's a good answer to this but if there is I haven't found it yet by searching in the usual places.
In my VB.Net (2010 if it matters) WinForms project I have about a dozen or so class objects in an object model. Some of these are pretty simple and do little more than act as data storage repositories. The ones further up the object model, however, have an increasing number of methods. There can be a significant number of higher level objects in use though the exact number will be runtime dependent so I can't be more precise than that.
As I was writing the method code for one of the top level ones I noticed that it was starting to get quite lengthy.
Memory optimisation is something of a lost art given how much memory the average PC has these days but I don't want to make my application a resource hog. So my questions for anyone who knows .Net way better than I do (of which there will be many) are:
Is the code loaded into memory with each instance of the class that's created?
Alternatively is it loaded only once with the definition of the class, and all derived objects just refer to that definition? (I'm not really sure how that could be possible given that, for example, event handlers can be assigned dynamically, but no harm asking.)
If the answer to the first one is yes, would it be more efficient to write the code in a "utility" object which is loaded only once and called from the real class' methods?
Any thoughts appreciated.
Go with whichever is going to be the easier to maintain codebase (shorter methods, etc). That is the more important cost with anything that has increasing complexity.
Memory optimization is only a problem if its a problem. 12 classes is really nothing, when you have hundreds of instances of hundreds of classes, then it may become a problem.
The short answer, it doesn't matter. Your data is stored in memory but your code is loaded only once.
EDIT: I guess I need a longer answer.
If you have 10 instances of a class, the variables that are part of that instance all take up thier own memory space. So if you have 10 properties, variables, etc, that means you have 100(ish) items in your memory. As for your code, it was loaded just once with your assembly. If you create 10 instances of your class, your code is not in memory 10 times.

Am I using Singleton approach correctly? (iOS game dev't)

I just got into using singletons and I just want to evaluate if I'm using it correctly. I've read that singletons are evil. I've only started with game dev't so things like unit testing and multithreading doesn't reach me yet.
I separated the logic of my game into different modules. Each module has a singleton and non-singleton classes (eg. data model). I'm using the singleton as a mediator so it can interact with other modules. This allows me to work with other people since it's in manageable pieces and I only need to expose the helper methods of my singleton. He doesn't need to know how I implemented it.
Am I doing the right thing?
Examples:
In a traditional japanese SRPG game (like FFTactics), the cells/grid for the tilemap has its own module. The character interacts with the singleton of this module.
All my sprites are generated by an AssetManager (a singleton) which autoscales the sprite depending on the resolution-availability and resolution of the device. This is done just by a calling a method in the singleton.
I definitely don't agree that singletons are evil. They are sometimes overused perhaps but on some occasions are just perfect for the job. In some applications it makes sense to have some kind of general data manager. The singleton pattern is used extensively in the SDK itself (app delegates, shared managers, default centers and so on). Most often these are not "pure" singletons, as in you can access a shared instance but can also create new instances if necessary.
The question you need to ask yourself is whether it would be useful to have access to a single instance of a data manager from anywhere at anytime, if it isn't then a singleton is probably not needed. If you are going to be using singletons in multi-threaded environments however, you do need to worry about race conditions (can one thread modify a resource while another is accessing it), the documentation has good explanations on how best to achieve this in Cocoa.
You could easily do that with an instance too.
Let's say you have a GameMap class and a Tile class. The GameMap represents a 2 dimension grid of Tile objects. (This is your FFTactics example).
GameMap *gameMap = [[GameMap alloc] init];
NSArray *theTiles = gameMap.tiles;
The instance of the GameMap owns the grid of tiles, and creates the tiles when the game map is created. No singleton needed.
You may say "but I only have one GameMap at a time, what's the big deal?". What about loading saved games, or loading new levels? Well that becomes as easy as:
// In whatever class object owns the game map
self.gameMap = [[GameMap alloc] initWithSaveData:saveData];
In conclusion, create an instance of a class that has code to manage other instances of things. Keep as little global as possible and your code will be more scalable and maintainable.

Length ( number of methods ) of a class code and performance

What kind of dependency is between number of methods, or length of source code of a class to performance (memory usage, speed of execution )? It is better to create as simple class as possible, or I can implement as may function as I want to one class? Does Java load whole class to memory, when object is accessed by interfaces?
You're thinking about it for the completely wrong reason.
Forget about performance. It does not matter in this question. At all.
Huge classes are very bad because they are hard to maintain. They're hard to understand, probably violate the Single Responsibility Principle massively or even harbor duplicated code.
There are a lot of parts to your question but performance and class size usually shouldn't be talked about together. Make small classes because it's easier to maintain and debug.
Classes (class code) are loaded into memory when they are referenced for the first time, or maybe sooner depending on the class loader but this is usually a small price compared to actually executing your code.
Yes, Java loads the whole class into memory. But it's probably not the class that consumes most memory, but rather the number of instances of it.
I'd say that except for extreme cases, there is little or no correlation between the lengthes and number of methods in your classes and memory usage in runtine.
AFAIU, the number of methods in a class (or more accurately the size of the class) will only affect the loading time.

Dealing with "global" data structures in an object-oriented world

This is a question with many answers - I am interested in knowing what others consider to be "best practice".
Consider the following situation: you have an object-oriented program that contains one or more data structures that are needed by many different classes. How do you make these data structures accessible?
You can explicitly pass references around, for example, in the constructors. This is the "proper" solution, but it means duplicating parameters and instance variables all over the program. This makes changes or additions to the global data difficult.
You can put all of the data structures inside of a single object, and pass around references to this object. This can either be an object created just for this purpose, or it could be the "main" object of your program. This simplifies the problems of (1), but the data structures may or may not have anything to do with one another, and collecting them together in a single object is pretty arbitrary.
You can make the data structures "static". This lets you reference them directly from other classes, without having to pass around references. This entirely avoids the disadvantages of (1), but is clearly not OO. This also means that there can only ever be a single instance of the program.
When there are a lot of data structures, all required by a lot of classes, I tend to use (2). This is a compromise between OO-purity and practicality. What do other folks do? (For what it's worth, I mostly come from the Java world, but this discussion is applicable to any OO language.)
Global data isn't as bad as many OO purists claim!
After all, when implementing OO classes you've usually using an API to your OS. What the heck is this if it isn't a huge pile of global data and services!
If you use some global stuff in your program, you're merely extending this huge environment your class implementation can already see of the OS with a bit of data that is domain specific to your app.
Passing pointers/references everywhere is often taught in OO courses and books, academically it sounds nice. Pragmatically, it is often the thing to do, but it is misguided to follow this rule blindly and absolutely. For a decent sized program, you can end up with a pile of references being passed all over the place and it can result in completely unnecessary drudgery work.
Globally accessible services/data providers (abstracted away behind a nice interface obviously) are pretty much a must in a decent sized app.
I must really really discourage you from using option 3 - making the data static. I've worked on several projects where the early developers made some core data static, only to later realise they did need to run two copies of the program - and incurred a huge amount of work making the data non-static and carefully putting in references into everything.
So in my experience, if you do 3), you will eventually end up doing 1) at twice the cost.
Go for 1, and be fine-grained about what data structures you reference from each object. Don't use "context objects", just pass in precisely the data needed. Yes, it makes the code more complicated, but on the plus side, it makes it clearer - the fact that a FwurzleDigestionListener is holding a reference to both a Fwurzle and a DigestionTract immediately gives the reader an idea about its purpose.
And by definition, if the data format changes, so will the classes that operate on it, so you have to change them anyway.
You might want to think about altering the requirement that lots of objects need to know about the same data structures. One reason there does not seem to be a clean OO way of sharing data is that sharing data is not very object-oriented.
You will need to look at the specifics of your application but the general idea is to have one object responsible for the shared data which provides services to the other objects based on the data encapsulated in it. However these services should not involve giving other objects the data structures - merely giving other objects the pieces of information they need to meet their responsibilites and performing mutations on the data structures internally.
I tend to use 3) and be very careful about the synchronisation and locking across threads. I agree it is less OO, but then you confess to having global data, which is very un-OO in the first place.
Don't get too hung up on whether you are sticking purely to one programming methodology or another, find a solution which fits your problem. I think there are perfectly valid contexts for singletons (Logging for instance).
I use a combination of having one global object and passing interfaces in via constructors.
From the one main global object (usually named after what your program is called or does) you can start up other globals (maybe that have their own threads). This lets you control the setting up of program objects in the main objects constructor and tearing them down again in the right order when the application stops in this main objects destructor. Using static classes directly makes it tricky to initialize/uninitialize any resources these classes use in a controlled manner. This main global object also has properties for getting at the interfaces of different sub-systems of your application that various objects may want to get hold of to do their work.
I also pass references to relevant data-structures into constructors of some objects where I feel it is useful to isolate those objects from the rest of the world within the program when they only need to be concerned with a small part of it.
Whether an object grabs the global object and navigates its properties to get the interfaces it wants or gets passed the interfaces it uses via its constructor is a matter of taste and intuition. Any object you're implementing that you think might be reused in some other project should definately be passed data structures it should use via its constructor. Objects that grab the global object should be more to do with the infrastructure of your application.
Objects that receive interfaces they use via the constructor are probably easier to unit-test because you can feed them a mock interface, and tickle their methods to make sure they return the right arguments or interact with mock interfaces correctly. To test objects that access the main global object, you have to mock up the main global object so that when they request interfaces (I often call these services) from it they get appropriate mock objects and can be tested against them.
I prefer using the singleton pattern as described in the GoF book for these situations. A singleton is not the same as either of the three options described in the question. The constructor is private (or protected) so that it cannot be used just anywhere. You use a get() function (or whatever you prefer to call it) to obtain an instance. However, the architecture of the singleton class guarantees that each call to get() returns the same instance.
We should take care not to confuse Object Oriented Design with Object Oriented Implementation. Al too often, the term OO Design is used to judge an implementation, just as, imho, it is here.
Design
If in your design you see a lot of objects having a reference to exactly the same object, that means a lot of arrows. The designer should feel an itch here. He should verify whether this object is just commonly used, or if it is really a utility (e.g. a COM factory, a registry of some kind, ...).
From the project's requirements, he can see if it really needs to be a singleton (e.g. 'The Internet'), or if the object is shared because it's too general or too expensive or whatsoever.
Implementation
When you are asked to implement an OO Design in an OO language, you face a lot of decisions, like the one you mentioned: how should I implement all the arrows to the oft used object in the design?
That's the point where questions are addressed about 'static member', 'global variable' , 'god class' and 'a-lot-of-function-arguments'.
The Design phase should have clarified if the object needs to be a singleton or not. The implementation phase will decide on how this singleness will be represented in the program.
Option 3) while not purist OO, tends to be the most reasonable solution. But I would not make your class a singleton; and use some other object as a static 'dictionary' to manage those shared resources.
I don't like any of your proposed solutions:
You are passing around a bunch of "context" objects - the things that use them don't specify what fields or pieces of data they are really interested in
See here for a description of the God Object pattern. This is the worst of all worlds
Simply do not ever use Singleton objects for anything. You seem to have identified a few of the potential problems yourself