Restrict Constructor Access - oop

I have a type like this
sealed class Foo[A](val value: A)
object Foo {
def apply[A](v: A)(implicit num: Numeric[A]): Foo[A] =
/* highly complex stuff to make a Foo[A] */
implicit def toA[A](x: Foo[A]) = x.value
}
Foo as a class is only supposed to hold the value, so an implicit Numeric would not make much sense. But I need the type of A to be always a numeric.
So my idea is to just make it impossible to use Foos normal constructor outside of its companion. Is that possible in Scala?

Yeah, since the companion object can access private members of its companion class you can just make the primary (and auxiliary if any) constructor private.
Pseudo code here:
class ConcreteFoo private (n: Int) extends Foo(n)

Related

Easiest way to modify value passed to inline class constructor

I'm trying to use inline classes in Kotlin to create a class inlining the String class, such that if I have an instance of my class that it will always be true for the contained string that s == s.trim().
I was initially expecting there to be a straightforward way to do this, like perhaps:
#JvmInline
value class Trimmed private constructor(val str: String) : {
constructor(s : String) : super(s.trim())
}
but that doesn't work, and neither do the other direct approaches I considered ("this(s.trim())", etc.).
This problem has turned out to be surprisingly tricky:
Kotlin seems to provide no easy way to have the primary constructor filter or modify the data that is passed to the constructor of the contained String object.
Even if I make the primary constructor private, I can't declare another constructor with the same signature (taking a single String as a parameter).
If this were a normal (non-inlined) class, I could just set the value after superclass class construction (e.g. "init { str = str.trim() }", but since it's an inline class, I can't do that. ("this=this.trim()" doesn't work either, and String objects themselves are immutable so I can't change the contents of 'str'.)
I tried making the class constructor private and creating a factory function in the same file with the same name as the class, but then I couldn't call the class constructor from within the factory function due to access restrictions.
I then tried making the factory function within the class's companion object, but then Kotlin tried to make that function call itself recursively instead of calling the class's constructor. I wasn't able to find a way to syntactially disambiguate this. I managed to work around this by creating a file-private typealias to give another name for the class so I could call the constructor from within the factory function. (Annoyingly, I couldn't declare the typealias in the companion object next to the factory function: I had to declare it outside.)
This worked, but seemed ugly:
typealias Trimmed2 = Trimmed
#JvmInline
value class Trimmed private constructor(val str: String) {
init { assert(str == str.trim()) }
companion object {
// Kotlin won't let me put the typealias here. :-(
fun Trimmed(s: String): Trimmed = Trimmed2(s.trim()) // Don't want recursion here!
}
}
Another working solution is here, using a private constructor with a dummy argument. Of course Kotlin complained that the dummy argument was unused and so I had to put in a big (why is it so big?) annotation suppressing the warning, which is, again, ugly:
#JvmInline
value class Trimmed private constructor(val str: String) {
private constructor (untrimmed: String, #Suppress("UNUSED_PARAMETER") dummy: Unit) : this(untrimmed.trim())
init { assert(str == str.trim()) }
companion object {
fun Trimmed(s: String): Trimmed = Trimmed(s, Unit)
}
}
Is there a simpler, cleaner way to do this? For instance, a syntactic way to clarify to Kotlin that the companion function is trying to call the class constructor and not itself and so avoid the need for a dummy parameter?
Goals:
Code to construct instances of the class from outside this file should look like constructing an instance of a normal class: 'Trimmed("abc")', not using some factory function with a different name (e.g. "of" or "trimmedOf") or other alternate syntax.
It should be impossible to construct the object containing an untrimmed string. Outside code, and the Trimmed class itself, should be able to trust that if a Trimmed instance exists, that its contained str will be a trimmed string.

Kotlin constructor val vs private val

If I have something like the following:
interface IRecordService {
fun doSomething () : Record
}
#MongoRepository
interface IRecordRepository : MongoRepository<Record, String> {
}
#Service
class RecordService (
private val recordRepository : IRecordRepository // or just val instead of private val
) : IRecordService
{
override fun doSomething () : Record {
// does something
}
}
Is there any difference between using private val in the RecordService constructor vs just val? I've seen both being used but couldn't tell if there was a recommended way or why.
This isn't specific to Spring or Mongo; it's just core Kotlin. There are several things going on here; I'll try to unpick them.
Consider the simpler definition:
class MyClass(i: Int)
The parens specify the primary constructor: any parameters there (such as i) are passed into the class, and are available during construction. So you could pass them up to the superclass constructor, use them in property initialisers, and/or in an init block:
class MyClass(i: Int) : MySuperclass(i) {
val someProperty = i
init {
println("i is $i")
}
}
However, they don't persist after the instance has been constructed — so you couldn't refer to them in methods, or from outside the class.
If you want to do that, you have to define a property for each parameter you want to persist. You could do that explicitly, e.g.:
class MyClass(i: Int) {
val i2 = i
}
Here every instance of MyClass has a property called i2 which is initialised to the i constructor parameter.
However, because this is a common pattern, Kotlin provides a shortcut. If you specify val or var in the primary constructor:
class MyClass(val i: Int)
then Kotlin creates a property with the same name as the parameter, and initialises it for you. So every instance of the above class has a property called i that you can refer to at any time.
By default, properties in Kotlin are public: you can access them from inside the class, from subclasses, from other classes in the same module, and from any other code that has a MyClass instance.
However, in some cases it's useful to restrict access, so you can add a visibility modifier: internal prevents code in other modules from seeing it, protected allows only subclasses to see it, and private makes it visible only inside the class itself.
So, to answer your question: without the private modifier, any code that had access to your RecordService would be able to access its recordRepository property; adding private prevents that, and means that only code within RecordService can see it.
In general, it might be a good idea to centralise all access to the recordRepository in the one class; then making it private would ensure that no other code can muck around with it. That would make it easier to see what's going on, easier to debug, and safer to work on. (However, we obviously don't know about the rest of your program, and can't advise on whether that would be a good plan in your case.)
By the way, using an I prefix for interfaces is not a convention that's used much in Kotlin (or Java). There's often little point in having an interface with only one implementation; and if you could have multiple implementations, then better to use a simple term for the interface and then more specific terms for the implementations.  (For example: the List interface with ArrayList and LinkedList classes, or Number with Int and Long.)
If you put val, it will be a constructor parameter and property. If you don't, it will be a constructor parameter (NOT property).
See Why to put val or var in kotlin class constructors
Firstly if you use val it converts this constructor parameter to property,If you do not want to hide this property (to set it) from other classes,you can use val.But if you do not want your property to be changed by other classes you should use private val instead.
Well, you can use both val and private val in your constructor there's no problem in that, it's just that with private keyword your properties wont be modified or accessed by some other class, so it basically provides some data hiding. If you talking about difference in functionality inside your RecordService class, then no there wont be any difference.

Kotlin data class secondary constructor init block

Let's imagine that we have data class with two properties and we need secondary constructor for some reasons. Problem is that i need recalculate each argument in primary constructor call instead of using some cached value of raw.split("_"):
data class Id(
val arg1: String,
val arg2: String
) {
constructor(raw: String) : this(raw.split("_")[0], raw.split("_")[1])
}
I can do this in Java but how I can do this in Kotlin?
You can do it this way:
data class Id(
val arg1: String,
val arg2: String
) {
private constructor(splitted: List<String>) : this(splitted[0], splitted[1])
constructor(raw: String) : this(raw.split("_"))
}
It's a good and idiomatic way to solve your problem. Since all secondary constructors must delegate to primary constructor (data class always has it), you can't do what you want in constructor body. In Java it works because there are no primary constructors and no data classes at language level - in Kotlin you can do it like in Java too if you remove data modifier and move properties outside of constructor, but it's a really bad way.

What should I do if I don't want a devired class call base class's constructor in Kotlin?

Is there any way to create an instance of Derived but not call the constructor of Base?
open class Base(p: Int)
class Derived(p: Int) : Base(p)
You actually can do it
import sun.misc.Unsafe
open class Base(p: Int){
init {
println("Base")
}
}
class Derived(p: Int) : Base(p){
init {
println("Derived")
}
}
fun main() {
val unsafe = Unsafe::class.java.getDeclaredField("theUnsafe").apply {
isAccessible = true
}.get(null) as Unsafe
val x = unsafe.allocateInstance(Derived::class.java)
println("X = $x")
}
But don't, this solution is a low-level mechanism that was designed to be used only by the core Java library and not by standard users. You will break the logic of OOP if you use it.
this is not possible. The constructor of the derived class has to call (any) constructor of the base class in order to initialise the content(fields) of the base class.
This is also the same case in Java. Just that the default constructor is called by default (if no parameters are provided in the constructor), but if you have to choose between constructors with parameters, you always have to call them explicitly, because you have to choose which values to pass into the constructor.
You must always call a constructor of a super-class to ensure that the foundation of the class is initialized. But you can work around your issue by providing a no-arg constructor in the base class. Something like this:
open class Base(p: Int?){
val p: Int? = p
constructor(): this(null)
}
class Derived(p: Int) : Base()
The way you handle which constructor of the base class is default and which parameters are nullable, etc. will depend highly on the specific case.

What is the benefit of having a private constructor and a use a method inside companion object to instantiate a class?

I've bumped into this code and I'm not sure why would anyone do this. Basically the author decided for making the class constructor private so that it cannot be instantiated outside the file, and added a public method to a companion object in the class that creates a new instance of this class. What is the benefit of this approach?
This is what I found:
class Foo private constructor(private val arg1: Any) {
//more code here..
companion object {
fun newFoo(arg1: Any) = Foo(arg1 = arg1)
}
}
Why is it better than this?
class Foo(private val arg1: Any) {
//more code here..
}
There are several benefits to providing a factory method instead of a public constructor, including:
It can do lots of processing before calling the construstor. (This can be important if the superclass constructor takes parameters that need to be calculated.)
It can return cached values instead of new instances where appropriate.
It can return a subclass. (This allows you to make the top class an interface, as noted in another answer.) The exact class can differ between calls, and can even be an anonymous type.
It can have a name (as noted in another answer). This is especially important if you need multiple methods taking the same parameters. (E.g. a Point object which could be constructed from rectangular or polar co-ordinates.) However, a factory method doesn't need a specific name; if you implement the invoke() method in the companion object, you can call it in exactly the same way as a constructor.
It makes it easier to change the implementation of the class without affecting its public interface.
It also has an important drawback:
It can't be used by subclass constructors.
Factory methods seem to be less used in Kotlin than Java, perhaps due to Kotlin's simpler syntax for primary constructors and properties. But they're still worth considering — especially as Kotlin companion objects can inherit.
For much deeper info, see this article, which looks at the recommendation in Effective Java and how it applies to Kotlin.
If you want to change Foo into an interface in the future the code based on the method will keep working, since you can return a concrete class which still implements Foo, unlike the constructor which no longer exists.
An example specific to android is, that Fragments should be constructed with an empty constructed, and any data you'd like to pass through to them should be put in a bundle.
We can create a static/companion function, which takes in the arguments we need for that fragment, and this method would construct the fragment using the empty constructor and pass in the data using a bundle.
There are many useful cases, for example what Kiskae described. Another good one would be to be able to "give your constructors names":
class Foo<S: Any, T: Any> private constructor(private val a: S, private val b: T) {
//more code here...
companion object {
fun <S: Any> createForPurposeX(a: S) = Foo(a = a, b = "Default value")
fun createForPurposeY() = Foo(a = 1, b = 2)
}
}
Call site:
Foo.createForPurposeX("Hey")
Foo.createForPurposeY()
Note: You should use generic types instead of Any.