kinect object measuring - camera

I am currently trying to figure out a way to calcute the size of a given object with kinect
since I have the following data
angular field of view of the lens
distance
and width in pixels from a 800*600 resolution
I believe this can be possible to calculate. Does anyone has math skills to give me a little help?

With some trigonometry, it should be possible to approximate.
If you draw a right trangle ABC, with the camera at one of the legs (A), and the object at the far end (edge BC), where the right angle is (C), then the height of the object is going to be the height of leg BC. the distance to the pixel might be the distance of leg AC or AB. The Kinect sensor specifications are going to regulate that. If you get distance to the center of a pixel, then it will be AC. if you have distances to pixel corners then the distance will be AB.
With A representing the angle at the camera that the pixel takes up, d is the distance of the hypotenuse of a right angle and y is the distance of the far leg (edge BC):
sin(A) = y / d
y = d sin(A)
y is the length of the pixel projected into the object plane. You calculate it by multiplying the sin of the angel by the distance to the object.
Here I confess I do not know the API of the kinect, and what level of detail it provides. You say you have the angle of the field of vision. You might assume each pixel of your 800x600 pixel grid takes up an equal angle of your camera's field of vision. If you do, then you can break up that field of vision into equal pieces to measure the linear size of your object in each pixel.
You also mentioned that you have the distance to the object. I was assuming that you have a distance map for each pixel of the 800x600 grid. If this is incorrect, some calculations can be done to approximate a distance grid for the pixels involving the object of interest if you make some assumptions about the object being measured.

Related

Calculate angle on a plane in 3D space from a 2D image

I have 2 input images of a plane where the (static) camera is at an unknown angle. I managed to extract edges and points of interests using opencv. But I'm stuck calculating real angles from the images.
From image #1 I need to calculate the camera angle relative to the plane. I know 3 points on the plane that form a equilateral triangle (angles of 60 degree). The center point of the triangle is also the centerpoint of the plane. However the plane center point on the image is covered by another object.
From image #2 I need to calculate the real angle of an object (Point C) on the plane to one of the 3 points and the plane center point (= line A to B).
How can I calculate the real angle β as if the camera had no angle towards the plane?
Update:
I was looking for a solution for my problem at https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html
There is a number of functions but I couldn't figure out how to apply them to my specific problem.
There is a function to calculate Homography using two images with keypoints but I do not have images of the scene from different camera angles.
Then there is cv::findHomography which Finds a perspective transformation between two planes. I know 4 source points but what are my 4 destination points?
Another one I was looking at is cv::solvePnP and cv::solvePnPRansac but again I only know 4 source points on the plane. I don't know about their 3D correspondence point.
What am I missing?
#Micka: Thanks for your input. I have 4 points for processing the image (the 3 static base points + the object at point C). I can assume these points are all located on the plane at z=0. However I do not have coordinates for a second plane neither the (x,y) of the corresponding 3D points.
Your description does not explicitly say it, but if you can assume that segment AB bisects the base of the triangle, then you have 4 point correspondences between the plane and its image, so you can use cv::findHomography.

Convert grid of dots in XY plane from camera coordinates to real world coordinates

I am writing a program. I have, say, a grid of dots on a piece of paper. I fix one end and bend the paper toward the screen, giving me a trapezoidal shape from the camera's point of view. I have the (x,y) camera coordinate of each dot. Is there a simple way I can change these (x,y) to real life (x,y) which should give me a rectangle? I have the camera/real (x,y) of the original flat sheet of paper pre-bend if that helps.
I have looked at 3D Camera coordinates to world coordinates (change of basis?) and Transforming screen coordinates from security camera to real world coordinates.
Look up "homography". The transformation from a plane in 3D space to its image as captured by an ideal pinhole camera is a homography. It can be represented as a 3x3 matrix H that transforms the 3D coordinates X of points in the world to their corresponding homogeneous image coordinates x:
x = H * X
where X is a 3x1 vector of the world point coordinates, and x = [u, v, w]^T is the image point in homogeneous coordinates.
Given a minimum of 4 matches between world and image points (e.g. the corners of a rectangle) you can estimate the parameters of the matrix H. For details, look up "DLT algorithm". In OpenCV the routine to use is findHomography.

pose estimation: determine whether rotation and transmation matrix are right

Recently I'm struggling with a pose estimation problem with a single camera. I have some 3D points and the corresponding 2D points on the image. Then I use solvePnP to get the rotation and translation vectors. The problem is, how can I determine whether the vectors are right results?
Now I use an indirect way to do this:
I use the rotation matrix, the translation vector and the world 3D coordinates of a certain point to obtain the coordinates of that point in Camera system. Then all I have to do is to determine whether the coordinates are reasonable. I think I know the directions of x, y and z axes of Camera system.
Is Camera center the origin of the Camera system?
Now consider the x component of that point. Is x equavalent to the distance of the camera and the point in the world space in Camera's x-axis direction (the sign can then be determined by the point is placed on which side of the camera)?
The figure below is in world space, while the axes depicted are in Camera system.
========How Camera and the point be placed in the world space=============
|
|
Camera--------------------------> Z axis
| |} Xw?
| P(Xw, Yw, Zw)
|
v x-axis
My rvec and tvec results seems right and wrong. For a specified point, the z value seems reasonable, I mean, if this point is about one meter away from the camera in the z direction, then the z value is about 1. But for x and y, according to the location of the point I think x and y should be positive but they are negative. What's more, the pattern detected in the original image is like this:
But using the points coordinates calculated in Camera system and the camera intrinsic parameters, I get an image like this:
The target keeps its pattern. But it moved from bottom right to top left. I cannot understand why.
Yes, the camera center is the origin of the camera coordinate system, which seems to be right following to this post.
In case of camera pose estimation, value seems reasonable can be named as backprojection error. That's a measure of how well your resulting rotation and translation map the 3D points to the 2D pixels. Unfortunately, solvePnP does not return a residual error measure. Therefore one has to compute it:
cv::solvePnP(worldPoints, pixelPoints, camIntrinsics, camDistortion, rVec, tVec);
// Use computed solution to project 3D pattern to image
cv::Mat projectedPattern;
cv::projectPoints(worldPoints, rVec, tVec, camIntrinsics, camDistortion, projectedPattern);
// Compute error of each 2D-3D correspondence.
std::vector<float> errors;
for( int i=0; i < corners.size(); ++i)
{
float dx = pixelPoints.at(i).x - projectedPattern.at<float>(i, 0);
float dy = pixelPoints.at(i).y - projectedPattern.at<float>(i, 1);
// Euclidean distance between projected and real measured pixel
float err = sqrt(dx*dx + dy*dy);
errors.push_back(err);
}
// Here, compute max or average of your "errors"
An average backprojection error of a calibrated camera might be in the range of 0 - 2 pixel. According to your two pictures, this would be way more. To me, it looks like a scaling problem. If I am right, you compute the projection yourself. Maybe you can try once cv::projectPoints() and compare.
When it comes to transformations, I learned not to follow my imagination :) The first thing I Do with the returned rVec and tVec is usually creating a 4x4 rigid transformation matrix out of it (I posted once code here). This makes things even less intuitive, but instead it is compact and handy.
Now I know the answers.
Yes, the camera center is the origin of the camera coordinate system.
Consider that the coordinates in the camera system are calculated as (xc,yc,zc). Then xc should be the distance between the camera and
the point in real world in the x direction.
Next, how to determine whether the output matrices are right?
1. as #eidelen points out, backprojection error is one indicative measure.
2. Calculate the coordinates of the points according to their coordinates in the world coordinate system and the matrices.
So why did I get a wrong result(the pattern remained but moved to a different region of the image)?
Parameter cameraMatrix in solvePnP() is a matrix supplying the parameters of the camera's external parameters. In camera matrix, you should use width/2 and height/2 for cx and cy. While I use width and height of the image size. I think that caused the error. After I corrected that and re-calibrated the camera, everything seems fine.

GLKView GLKMatrix4MakeLookAt description and explanation

For modelviewMatrix I understand how to form translate and scale Matrix. But I am unable to understand how to form viewMatrix using GLKMatrix4MakeLookAt. Can anyone explain how to it works and how to give value to parameters(eye center up X Y Z).
GLK_INLINE GLKMatrix4 GLKMatrix4MakeLookAt(float eyeX, float eyeY, float eyeZ,
float centerX, float centerY, float centerZ,
float upX, float upY, float upZ)
GLKMatrix4MakeLookAt creates a viewing matrix (in the same way as gluLookAt does, in case you look at other OpenGL code). As the parameters suggest, it considers the position of the viewer's eye, the point in space they're looking at (e.g., a point on an object), and the up vector, which specifies which direction is "up" (e.g., pointing towards the sky). The viewing matrix generated is the combination of a rotation matrix (composed of a set of orthonormal bases [basis vectors]) and an translation.
Logically, the matrix is basically constructed in a few steps:
compute the line-of-sight vector, which is the normalized vector going from the eye's position to the point you're looking at, the center point.
compute the cross product of the line-of-sight vector with the up vector, and normalize the resulting vector.
compute the cross product of the vector computed in step 2. with the line-of-sight to complete the orthonormal basis.
create a 3x3 rotation matrix by setting the first row to the vector created in step 2., the middle row with the vector from step 3., and the bottom row to the negated, normalized line-of-sight vector.
those three steps produce a rotation matrix that will rotate the world coordinate system into eye coordinates (a coordinate system where the eye is located at the origin, and the line-of-sight is down the -z axis. The final viewing matrix is computed by multiplying a translation to the negated eye position, which moves the "world coordinate positioned eye" to the origin for eye coordinates.
Here's a related question showing the code of GLKMatrix4MakeLookAt, and here's a question with more detail about eye coordinates and related coordinate systems: (What exactly are eye space coordinates?) .

Reflecting a circle off another circle

Working with iPhone and Objective C.
I am working on a game and I need to correctly reflect a ball off a circle object. I am trying to do it as a line and circle intersection. I have my ball position outside the circle and I have the new ball position that would be inside the circle at the next draw update. I know the intersect point of the line (ball path) and the circle. Now I want to rotate the ending point of the ball path about the intersection point to get the correct angle of reflection off the tangent.
The following are known:
ball current x,y
ball end x,y
ball radius
circle center x,y
circle radius
intersection point of ball path and circle x and y
I know I need to find the angle of incidence between the tangent line and the incoming ball path which will also equal my angle of reflection. I think once I know those two angles I can subtract them from 180 to get my rotation angle then rotate my end point about the angle of intersection by that amount. I just don't know how.
First, you should note that the center of the ball doesn't have to be inside of the circle to indicate that there's a reflection or bounce. As long as the distance between ball center and circle is less than the radius of the ball, there will be a bounce.
If the radius of the circle is R and the radius of the ball is r, things are simplified if you convert to the case where the circle has radius R+r and the ball has radius 0. For the purposes of collision detection and reflection/bouncing, this is equivalent.
If you have the point of intersection between the (enlarged) circle and the ball's path, you can easily compute the normal N to the circle at that point (it is the unit vector in the direction from the center of the circle to the collision point).
For an incoming vector V the reflected vector is V-2(N⋅V) N, where (N⋅V) is the dot product. For this problem, the incoming vector V is the vector from the intersection point to the point inside the circle.
As for the reflection formula given above, it is relatively easy to derive using vector math, but you can also Google search terms like "calculate reflection vector". The signs in the formula will vary with the assumed directions of V and N. Mathworld has a derivation although, as noted, the signs are different.
I only know the solution to the geometry part.
Let:
r1 => Radius of ball
r2 => Radius of circle
You can calculate the distance between the two circles by using Pythagoras theorem.
If the distance is less than the r1+r2 then do the collision.
For the collision,I would refer you Here. It's in python but I think it should give you an idea of what to do. Hopefully, even implement it in Objective C. The Tutorial By PeterCollingRidge.