SQL "WITH" Performance and Temp Table (possible "Query Hint" to simplify) - sql

Given the example queries below (Simplified examples only)
DECLARE #DT int; SET #DT=20110717; -- yes this is an INT
WITH LargeData AS (
SELECT * -- This is a MASSIVE table indexed on dt field
FROM mydata
WHERE dt=#DT
), Ordered AS (
SELECT TOP 10 *
, ROW_NUMBER() OVER (ORDER BY valuefield DESC) AS Rank_Number
FROM LargeData
)
SELECT * FROM Ordered
and ...
DECLARE #DT int; SET #DT=20110717;
BEGIN TRY DROP TABLE #LargeData END TRY BEGIN CATCH END CATCH; -- dump any possible table.
SELECT * -- This is a MASSIVE table indexed on dt field
INTO #LargeData -- put smaller results into temp
FROM mydata
WHERE dt=#DT;
WITH Ordered AS (
SELECT TOP 10 *
, ROW_NUMBER() OVER (ORDER BY valuefield DESC) AS Rank_Number
FROM #LargeData
)
SELECT * FROM Ordered
Both produce the same results, which is a limited and ranked list of values from a list based on a fields data.
When these queries get considerably more complicated (many more tables, lots of criteria, multiple levels of "with" table alaises, etc...) the bottom query executes MUCH faster then the top one. Sometimes in the order of 20x-100x faster.
The Question is...
Is there some kind of query HINT or other SQL option that would tell the SQL Server to perform the same kind of optimization automatically, or other formats of this that would involve a cleaner aproach (trying to keep the format as much like query 1 as possible) ?
Note that the "Ranking" or secondary queries is just fluff for this example, the actual operations performed really don't matter too much.
This is sort of what I was hoping for (or similar but the idea is clear I hope). Remember this query below does not actually work.
DECLARE #DT int; SET #DT=20110717;
WITH LargeData AS (
SELECT * -- This is a MASSIVE table indexed on dt field
FROM mydata
WHERE dt=#DT
**OPTION (USE_TEMP_OR_HARDENED_OR_SOMETHING) -- EXAMPLE ONLY**
), Ordered AS (
SELECT TOP 10 *
, ROW_NUMBER() OVER (ORDER BY valuefield DESC) AS Rank_Number
FROM LargeData
)
SELECT * FROM Ordered
EDIT: Important follow up information!
If in your sub query you add
TOP 999999999 -- improves speed dramatically
Your query will behave in a similar fashion to using a temp table in a previous query. I found the execution times improved in almost the exact same fashion. WHICH IS FAR SIMPLIER then using a temp table and is basically what I was looking for.
However
TOP 100 PERCENT -- does NOT improve speed
Does NOT perform in the same fashion (you must use the static Number style TOP 999999999 )
Explanation:
From what I can tell from the actual execution plan of the query in both formats (original one with normal CTE's and one with each sub query having TOP 99999999)
The normal query joins everything together as if all the tables are in one massive query, which is what is expected. The filtering criteria is applied almost at the join points in the plan, which means many more rows are being evaluated and joined together all at once.
In the version with TOP 999999999, the actual execution plan clearly separates the sub querys from the main query in order to apply the TOP statements action, thus forcing creation of an in memory "Bitmap" of the sub query that is then joined to the main query. This appears to actually do exactly what I wanted, and in fact it may even be more efficient since servers with large ammounts of RAM will be able to do the query execution entirely in MEMORY without any disk IO. In my case we have 280 GB of RAM so well more then could ever really be used.

Not only can you use indexes on temp tables but they allow the use of statistics and the use of hints. I can find no refernce to being able to use the statistics in the documentation on CTEs and it says specifically you cann't use hints.
Temp tables are often the most performant way to go when you have a large data set when the choice is between temp tables and table variables even when you don't use indexes (possobly because it will use statistics to develop the plan) and I might suspect the implementation of the CTE is more like the table varaible than the temp table.
I think the best thing to do though is see how the excutionplans are different to determine if it is something that can be fixed.
What exactly is your objection to using the temp table when you know it performs better?

The problem is that in the first query SQL Server query optimizer is able to generate a query plan. In the second query a good query plan isn't able to be generated because you're inserting the values into a new temporary table. My guess is there is a full table scan going on somewhere that you're not seeing.
What you may want to do in the second query is insert the values into the #LargeData temporary table like you already do and then create a non-clustered index on the "valuefield" column. This might help to improve your performance.

It is quite possible that SQL is optimizing for the wrong value of the parameters.
There are a couple of options
Try using option(RECOMPILE). There is a cost to this as it recompiles the query every time but if different plans are needed it might be worth it.
You could also try using OPTION(OPTIMIZE FOR #DT=SomeRepresentatvieValue) The problem with this is you pick the wrong value.
See I Smell a Parameter! from The SQL Server Query Optimization Team blog

Related

Query is very slow when we put a where clause on the total selected data by query

I am running a query which is selecting data on the basis of joins between 6-7 tables. When I execute the query it is taking 3-4 seconds to complete. But when I put a where clause on the fetched data it's taking more than one minute to execute. My query is fetching large amounts of data so I can't write it here but the situation I faced is explained below:
Select Category,x,y,z
from
(
---Sample Query
) as a
it's only taking 3-4 seconds to execute. But
Select Category,x,y,z
from
(
---Sample Query
) as a
where category Like 'Spart%'
is taking more than 2-3 minutes to execute.
Why is it taking more time to execute when I use the where clause?
It's impossible to say exactly what the issue is without seeing the full query. It is likely that the optimiser is pushing the WHERE into the "Sample query" in a way that is not performant. Possibly could be resolved by updating statistics on the table, but an easier option would be to insert the whole query into a temporary table, and filter from there.
Select Category,x,y,z
INTO #temp
from
(
---Sample Query
) as a
SELECT * FROM #temp WHERE category Like 'Spart%'
This will force the optimiser to tackle it in the logical order of pulling your data together before applying the WHERE to the end result. You might like to consider indexing the temp table's category field also.
If you're using MS SQL by checking the management studio actual execution plan it may already suggest an index creation
In any case, you should add to the index used by the query the column "Category"
If you don't have an index on that table create it composed by column "Category" and all the other columns used in join or where
bear in mind by using like 'text%' clause you could end in index scan and not index seek

MS Access 2010 SQL Top N query by group performance issue (continued)

I have signficant performcance issues (up to time-out) in MS Access 2010 with the query below. The table TempTableAnalysis contains between 10'000-15'000 records. I have already received input from this forum to work with a temporary table in the top 10 query (MS Access 2010 SQL Top N query by group performance issue)
Can anyone explain how to implement the temporary table in the subquery and how to join it? I can't get it to work.
Any other suggestions to improve performance are highly appreciated.
Here is my query:
SELECT
t2.Loc,
t2.ABCByPick,
t2.Planner,
t2.DmdUnit,
ROUND(t2.MASE,2) AS MASE,
ROUND(t2.AFAR,2) AS AFAR
FROM TempTableAnalysis AS t2
WHERE t2.MASE IN (
SELECT TOP 10 t1.MASE
FROM TempTableAnalysis AS t1
WHERE t1.ABCByPick = t2.ABCByPick
ORDER BY t1.MASE DESC
)
ORDER BY
t2.ABCByPick,
t2.MASE DESC;
Optimizing Access Query Performance For Large Data Sets
Based on your posted SQL Query, you have some options available to optimize and speed up the performance.
SELECT
t2.Loc,
t2.ABCByPick,
t2.Planner,
t2.DmdUnit,
ROUND(t2.MASE,2) AS MASE,
ROUND(t2.AFAR,2) AS AFAR
FROM TempTableAnalysis AS t2
...
This is the first part where TempTableAnalysis is the multi-thousand record subquery. If you want to squeeze a little more performance out of the use of this "Temp" Table, don't use it as a dynamic query (i.e., calculated on demand each time the query is opened), try constructing a macro that pushes the output to a static table:
Appending Subquery Data to a Static Table:
Create a QUERY object and change its type to DELETE. Design it to delete the contents of your "temporary" table object. If you prefer using SQL, the command will look like:
DELETE My_Table.*
FROM My_Table;
Create a QUERY object and change its type to APPEND. Design it to query all fields from your query defined by the SQL statement of this OP. Again, the SQL version of this task has the following syntax:
INSERT INTO StaticAnalysisTable ( ID, Loc, Item, AvgOfScaledError )
SELECT t1.ID, t1.Loc, t1.Item, t1.AvgOfScaledError
FROM TempTableAnalysis as t1;
The next step is to automate the population of this static table and it is optional. It's simple however and will make it less likely that you will make the mistake of forgetting to "Refresh" and accessing your static table while it has stale data... causing inaccuracies in your results.
Create a macro with two steps. Each step will have the following definition: OPEN QUERY. When prompted for the query to open, reference the objects you created in the previous two steps in the following order (important): (1) DELETE Query: (your delete query name) then (2) APPEND Query: (your append query name).
SQL Query Comments and Suggestions
The following part of the posted SQL query could use some help:
...
WHERE t2.MASE IN (
SELECT TOP 10 t1.MASE
FROM TempTableAnalysis AS t1
WHERE t1.ABCByPick = t2.ABCByPick
ORDER BY t1.MASE DESC
)
ORDER BY
t2.ABCByPick,
t2.MASE DESC;
There is a join across the sub query that generates the TOP-10 data and the outermost query that correlates these results with the supplementing MASE table data. This isn't necessary if the TempTableAnalysis.MASE represents a key value.
ORDER BY
in the inner most query isn't necessary unless it is intended to force some sort of selection criteria (as in when using SQL analytical functions) this doesn't look like one of those cases. Ordering records from large data sets is also a wasteful cpu and memory sink.
EDIT: Just as a counter-point argument, the ORDER BY clause used beside a TOP N query actually has a purpose, but I am still not clear if it is necessary. Just to round out the discussion, another SO thread talks about How to Select Top 10 in an Access Query.
WHERE t2.MASE IN (...
You may be experiencing blocks in performance with very large in-list set operations. On an Oracle database server, I have discovered with other developers that there is a limitation to the number of discrete elements in an in-list query operator. That value was in the thousands... which may be further limited based on server and database resources.
Consider using a SQL JOIN operator. The place where you define TABLE objects can also be populated with SQL defined queries with aliases known as INLINE VIEWS. Since you're using ACCESS, if an inline view does not work directly, just define another ACCESS QUERY object and reference it in your final query as if it were a table...
A possible rewrite to the ending part of the original query:
SELECT
t2.Loc,
t2.ABCByPick,
t2.Planner,
...
FROM TempTableAnalysis AS t2,
(SELECT TOP 10 t1.MASE, t1.ABCByPick
FROM TempTableAnalysis AS t1) AS ttop
WHERE t2.MASE = ttop.MASE
AND t2.ABCByPick = ttop.ABCByPick
ORDER BY
t2.ABCByPick,
t2.MASE DESC;
You will definitely need to run through these recommendations and validate the output data for accuracy. This represents approaches to capturing some of the "low-hanging fruit" (easy items) that you can pursue to speed up your query and reporting operations.
Conclusions and Closing Comments
As a background to other readers, the database object TempTableAnalysis is not a static table. It is the result of a sub query presented in another SO post requesting help with a Access TOP N Query. The query comes from multiple tables approaching 10,000 records in size (each?).
Tip: A query result in Access ALSO has potential table-like behaviors. You can push the output to a table for joining (as described above) or just join to the query object itself (careful though, especially when you get to "chaining" multiple query operations...)
The strategy of this solution was:
To minimize the number of trips through one or more instances of this very large table.
To pre-process and index optimize any data that would otherwise be "static" for the duration of its analysis.
To audit and review the SQL code used to obtain the final results.
Definitely look into Access MACROS. Coupled with identifying static data in your data sets, you can offload processing of your complex background analytic queries to improve the user experience when they view and query through the final results. Good Luck!

Join to SELECT vs. Join to Tableset

For the DB gurus out there, I was wondering if there is any functional/performance difference between Joining to the results a SELECT statement and Joining to a previously filled table variable. I'm working in SQL Server 2008 R2.
Example (TSQL):
-- Create a test table
DROP TABLE [dbo].[TestTable]
CREATE TABLE [dbo].[TestTable](
[id] [int] NOT NULL,
[value] [varchar](max) NULL
) ON [PRIMARY]
-- Populate the test table with a few rows
INSERT INTO [dbo].[TestTable]
SELECT 1123, 'test1'
INSERT INTO [dbo].[TestTable]
SELECT 2234, 'test2'
INSERT INTO [dbo].[TestTable]
SELECT 3345, 'test3'
-- Create a reference table
DROP TABLE [dbo].[TestRefTable]
CREATE TABLE [dbo].[TestRefTable](
[id] [int] NOT NULL,
[refvalue] [varchar](max) NULL
) ON [PRIMARY]
-- Populate the reference table with a few rows
INSERT INTO [dbo].[TestRefTable]
SELECT 1123, 'ref1'
INSERT INTO [dbo].[TestRefTable]
SELECT 2234, 'ref2'
-- Scenario 1: Insert matching results into it's own table variable, then Join
-- Create a table variable
DECLARE #subset TABLE ([id] INT NOT NULL, [refvalue] VARCHAR(MAX))
INSERT INTO #subset
SELECT * FROM [dbo].[TestRefTable]
WHERE [dbo].[TestRefTable].[id] = 1123
SELECT t.*, s.*
FROM [dbo].[TestTable] t
JOIN #subset s
ON t.id = s.id
-- Scenario 2: Join directly to SELECT results
SELECT t.*, s.*
FROM [dbo].TestTable t
JOIN (SELECT * FROM [dbo].[TestRefTable] WHERE id = 1123) s
ON t.id = s.id
In the "real" world, the tables and table variable are pre-defined. What I'm looking at is being able to have the matched reference rows available for further operations, but I'm concerned that the extra steps will slow the query down. Are there technical reasons as to why one would be faster than the other? What sort of performance difference may be seen between the two approaches? I realize it is difficult (if not impossible) to give a definitive answer, just looking for some advice for this scenario.
The database engine has an optimizer to figure out the best way to execute a query. There is more under the hood than you probably imagine. For instance, when SQL Server is doing a join, it has a choice of at least four join algorithms:
Nested Loop
Index Lookup
Merge Join
Hash Join
(not to mention the multi-threaded versions of these.)
It is not important that you understand how each of these works. You just need to understand two things: different algorithms are best under different circumstances and SQL Server does its best to choose the best algorithm.
The choice of join algorithm is only one thing the optimizer does. It also has to figure out the ordering of the joins, the best way to aggregate results, whether a sort is needed for an order by, how to access the data (via indexes or directly), and much more.
When you break the query apart, you are making an assumption about optimization. In your case, you are making the assumption that the first best thing is to do a select on a particular table. You might be right. If so, your result with multiple queries should be about as fast as using a single query. Well, maybe not. When in a single query, SQL Server does not have to buffer all the results at once; it can stream results from one place to another. It may also be able to take advantage of parallelism in a way that splitting the query prevents.
In general, the SQL Server optimizer is pretty good, so you are best letting the optimizer do the query all in one go. There are definitely exceptions, where the optimizer may not choose the best execution path. Sometimes fixing this is as easy as being sure that statistics are up-to-date on tables. Other times, you can add optimizer hints. And other times you can restructure the query, as you have done.
For instance, one place where loading data into a local table is useful is when the table comes from a different server. The optimizer may not have full information about the size of the table to make the best decisions.
In other words, keep the query as one statement. If you need to improve it, then focus on optimization after it works. You generally won't have to spend much time on optimization, because the engine is pretty good at it.
This would give the same result?
SELECT t.*, s.*
FROM dbo.TestTable AS t
JOIN dbo.TestRefTable AS s ON t.id = s.id AND s.id = 1123
Basically, this is a cross join of all records from TestTable and TestRefTable with id = 1123.
Joining to table variables will also result in bad cardinality estimates by the optimizer. Table variables are always assumed by the optimizer to contain only a single row. The more rows it actually has the worse that estimate becomes. This causes the optimizer to assume the wrong number of rows for the table itself, but in other places, for operators that might then join to that result, it can result in wrong estimations of the number executions for that operation.
Personally I think Table parameters should be used for getting data into and out of the server conveniently using client apps (C# .Net apps make good use of them), or for passing data between Stored Procs, but should not be used too much within the proc itself. The importance of getting rid of them within the Proc code itself increases with the expected number of rows to be carried by the parameter.
Sub Selects will perform better, or immediately copying into a temp table will work well. There is overhead for copying into the temp table, but again, the more rows you have the more worth it that overhead becomes because the estimates by the optimizer get worse and worse.
In general a derived table in the query is probably going to be faster than joining to a table variable because it can make use of indexes and they are not available in table variables. However, temp tables can also have indexes creted and that might solve the potential performance difference.
Also if the number of table variable records is expected to be small, then indexes won't make a great deal of difference anyway and so there would be little or no differnce.
As alawys you need to test on your own system as number of records and table design and index design havea great deal to do with what works best.
I'd expect the direct Table join to be faster than the Table to TableVariable, and use less resources.

Select top 4 with order by, but only if actually required?

I have part of a stored proc that is called thousands and thousands of times and as a result takes up the bulk of the whole thing. Having run it through execution plan it looks like the TOP 4 and Order By part is taking up a lot of that. The order by uses a function that although streamlined, will still be being used a fair bit.
This is an odd situation in that for 99.5% of the data there will be 4 or less results returned anyway, it's only for the 0.5% of times that we need the TOP 4. This is a requirement of the data algorithm so eliminating the TOP 4 entirely is not an option.
So lets say my syntax is
SELECT SomeField * SomeOtherField as MainField, SomeOtherField
FROM
(
SELECT TOP 4
SomeField, 1/dbo.[Myfunction](Param1, Param2, 34892) as SomeOtherField
FROM #MytempTable
WHERE
Param1 > #NextMargin1 AND Param1 < #NextMargin1End
AND Param2 > #NextMargin2 AND Param2 < #NextMargin2End
ORDER BY dbo.[MyFunction](Param1, Param2, 34892)
) d
Is there a way I can tell SQL server to do the order by if and only if there are more than 4 results returned after the where takes place? I don't need the order otherwise. Perhaps a table variable and count of the table in an if?
--- Update based on Davids Answer to try to work out why it was slower:
I did a check and can confirm that 96.5% of times there are 4 or less results so it's not a case of more data than expected.
Here is the execution plan for the insert into the #FunctionResults
And the breakdowns of the Insert and spool:
And then the execution plan for the selection of the top4 and orderby:
Please let me know if any further information or breakdowns are required, the size of #Mytemptable could typically be 28000 rows and it has index
CREATE INDEX MyIndex on #MyTempTable (Param1, Param2) INCLUDE ([SomeField])
This answer has been updated based on continued feedback from the question asker. The original suggestion was to attempt to use a table variable to store pre-calculations and select the top 4 from the results. However, in practice it appears that the optimizer was over-estimating the number of rows and choosing a bad execution plan.
In addition to the previous recommendations, I would also recommend updating statistics periodically after any change to this process to provide the query optimizer with updated information to make more informed decisions.
As this is a performance tuning process without direct access to the source environment, this answer is expected to change based on user feedback. Per the recommendation of #SteveFord above, the sample query below reflects the use of a CROSS APPLY to attempt to avoid multiple unnecessary function calls.
SELECT TOP 4
M.SomeField,
M.SomeField * 1/F.FunctionResults [SomeOtherField]
FROM #MytempTable M
CROSS APPLY (SELECT dbo.Myfunction(M.Param1, M.Param2, 34892)) F(FunctionResults)
ORDER BY F.FunctionResults

SQL WHERE ID IN (id1, id2, ..., idn)

I need to write a query to retrieve a big list of ids.
We do support many backends (MySQL, Firebird, SQLServer, Oracle, PostgreSQL ...) so I need to write a standard SQL.
The size of the id set could be big, the query would be generated programmatically. So, what is the best approach?
1) Writing a query using IN
SELECT * FROM TABLE WHERE ID IN (id1, id2, ..., idn)
My question here is. What happens if n is very big? Also, what about performance?
2) Writing a query using OR
SELECT * FROM TABLE WHERE ID = id1 OR ID = id2 OR ... OR ID = idn
I think that this approach does not have n limit, but what about performance if n is very big?
3) Writing a programmatic solution:
foreach (var id in myIdList)
{
var item = GetItemByQuery("SELECT * FROM TABLE WHERE ID = " + id);
myObjectList.Add(item);
}
We experienced some problems with this approach when the database server is queried over the network. Normally is better to do one query that retrieve all results versus making a lot of small queries. Maybe I'm wrong.
What would be a correct solution for this problem?
Option 1 is the only good solution.
Why?
Option 2 does the same but you repeat the column name lots of times; additionally the SQL engine doesn't immediately know that you want to check if the value is one of the values in a fixed list. However, a good SQL engine could optimize it to have equal performance like with IN. There's still the readability issue though...
Option 3 is simply horrible performance-wise. It sends a query every loop and hammers the database with small queries. It also prevents it from using any optimizations for "value is one of those in a given list"
An alternative approach might be to use another table to contain id values. This other table can then be inner joined on your TABLE to constrain returned rows. This will have the major advantage that you won't need dynamic SQL (problematic at the best of times), and you won't have an infinitely long IN clause.
You would truncate this other table, insert your large number of rows, then perhaps create an index to aid the join performance. It would also let you detach the accumulation of these rows from the retrieval of data, perhaps giving you more options to tune performance.
Update: Although you could use a temporary table, I did not mean to imply that you must or even should. A permanent table used for temporary data is a common solution with merits beyond that described here.
What Ed Guiness suggested is really a performance booster , I had a query like this
select * from table where id in (id1,id2.........long list)
what i did :
DECLARE #temp table(
ID int
)
insert into #temp
select * from dbo.fnSplitter('#idlist#')
Then inner joined the temp with main table :
select * from table inner join temp on temp.id = table.id
And performance improved drastically.
First option is definitely the best option.
SELECT * FROM TABLE WHERE ID IN (id1, id2, ..., idn)
However considering that the list of ids is very huge, say millions, you should consider chunk sizes like below:
Divide you list of Ids into chunks of fixed number, say 100
Chunk size should be decided based upon the memory size of your server
Suppose you have 10000 Ids, you will have 10000/100 = 100 chunks
Process one chunk at a time resulting in 100 database calls for select
Why should you divide into chunks?
You will never get memory overflow exception which is very common in scenarios like yours.
You will have optimized number of database calls resulting in better performance.
It has always worked like charm for me. Hope it would work for my fellow developers as well :)
Doing the SELECT * FROM MyTable where id in () command on an Azure SQL table with 500 million records resulted in a wait time of > 7min!
Doing this instead returned results immediately:
select b.id, a.* from MyTable a
join (values (250000), (2500001), (2600000)) as b(id)
ON a.id = b.id
Use a join.
In most database systems, IN (val1, val2, …) and a series of OR are optimized to the same plan.
The third way would be importing the list of values into a temporary table and join it which is more efficient in most systems, if there are lots of values.
You may want to read this articles:
Passing parameters in MySQL: IN list vs. temporary table
I think you mean SqlServer but on Oracle you have a hard limit how many IN elements you can specify: 1000.
Sample 3 would be the worst performer out of them all because you are hitting up the database countless times for no apparent reason.
Loading the data into a temp table and then joining on that would be by far the fastest. After that the IN should work slightly faster than the group of ORs.
For 1st option
Add IDs into temp table and add inner join with main table.
CREATE TABLE #temp (column int)
INSERT INTO #temp (column)
SELECT t.column1 FROM (VALUES (1),(2),(3),...(10000)) AS t(column1)
Try this
SELECT Position_ID , Position_Name
FROM
position
WHERE Position_ID IN (6 ,7 ,8)
ORDER BY Position_Name