Objects with two properties only - oop

I am trying to decide on the best approach to the following problem:
I have a class called Desk. A desk has lots of properties. A Desk may have some objects on it. The current application specifies that it can have Pencils, Computers, or Cups on the desk. A few more objects may be added in the future. It can have one or none of each object. The Pencils have a property of Color, all of the objects have an ID and name. All of this information must be persistent so is stored in a database in some form.
Do I:
public class Desk {
public int property1;
public int property2;
...
public ISet<DeskObject> deskObjects;
}
public DeskObject {
public int deskObjectID;
public String name;
public DeskObject(name) {
this.name = name;
}
}
public Computer extends DeskObject {
DeskObject("Computer");
}
public Pencil extends DeskObject {
DeskObject("Pencil);
public Color color;
}
I also need to easily tell which objects a Desk contains in O(1) time. This means I will have to override hashcode and equals (probably by just returning the ID) for the DeskObjects so I can do set.contains(object). It seems like overkill and a misuse of objects. Surely there is a better solution?

If your domain is about desks and the objects they contain, then an object model like this is entirely warranted. The only question you need to ask yourself is this: Is this my domain model, or is it a computation model?
From the phrasing of your question, I would infer its rather the latter. Your objects do not contain any behavior (such as Desk.CleanNonRecentlyUsed()).
A domain model contains data and behavior (a true object model, I call this domain model), a computation model is data and separated behavior (procedural code).
If all your model needs to do is provide efficient lookups, you can chose any abstract representation that suits you. A lightweight object that captures just data is ok, but you could also use tuples (or to be .net specific since you mentioned GetHashCode: Annonymous classes) or just a Hashtable for the desk. Your computation model can be anything from an Index in your database (sounds reasonable in your example), a special object model, or dedicated algorithms over plain arrays.
Most of the time, it is not warranted to create a computation model when you already have a domain model. But sometimes it is.

Related

when one-to-one relation should I store everything in object or in dedicated storage?

Assume we have class Car which MAIN field is called VIN (Vehicle Identification Number). VIN gives us a lot of information such us:
owner
place of registration
country of production
year of production
color
engine type
etc. etc
I can continue and add more information:
last known GPS coordinates
fine list
is theft (boolean)
etc. etc.
It seems reasonable to store some of information (for example year of production and engine type) right inside Car object. However storing all this information right inside Car object will make it too complicated, "overloaded" and hard to manage. Moreover while application evolves I can add more and more information.
So where is the border? What should be stored inside Car object and what should be stored outside in something like Dictionary<Car, GPSCoordinates>
I think that probably I should store "static" data inside Car object so making it immutable. And store "dynamic" data in special storages.
I would use a class called CarModel for the base attributes shared by every possible car in your application (engine size, color, registration #, etc). You can then extend this class with any number of more specific subclasses like Car, RentalCar, or whatever fits your business logic.
This way you have one clear definition of what all cars share and additional definitions for the different states cars can be in (RentalCar with its unique parameters, for example).
Update:
I guess what you're looking for is something like this (although I would recommend against it):
public class Car
{
// mandatory
protected int engineSize;
protected int color;
// optional
protected Map<String, Object> attributes = new HashMap<String, Object>();
public void set(String name, Object value)
{
attributes.put(name, value);
}
public Object get(String name)
{
return attributes.get(name);
}
}
Why this is not a good solution:
Good luck trying to persist this class to a database or design anything that relies on a well known set of attributes for it.
Nightmare to debug potential problems.
Not a very good use of OOP with regard to type definitions. This can be abused to turn the Car class into something it is not.
Just because your Car class provide a property GPSCoordinates does not mean you need to hold those coordinates internally. Essentially, that's what encapsulation is all about.
And yes, you can then add properties such as "IsInGarageNow", "WasEverDrivedByMadonna" or "RecommendedOil".

An alternative way to use Azure Table Storage?

I'd like to use for table storage an entity like this:
public class MyEntity
{
public String Text { get; private set; }
public Int32 SomeValue { get; private set; }
public MyEntity(String text, Int32 someValue)
{
Text = text;
SomeValue = someValue;
}
}
But it's not possible, because the ATS needs
Parameterless constructor
All properties public and
read/write.
Inherit from TableServiceEntity;
The first two, are two things I don't want to do. Why should I want that anybody could change some data that should be readonly? or create objects of this kind in a inconsistent way (what are .ctor's for then?), or even worst, alter the PartitionKey or the RowKey. Why are we still constrained by these deserialization requirements?
I don't like develop software in that way, how can I use table storage library in a way that I can serialize and deserialize myself the objects? I think that as long the objects inherits from TableServiceEntity it shouldn't be a problem.
So far I got to save an object, but I don't know how retrieve it:
Message m = new Message("message XXXXXXXXXXXXX");
CloudTableClient tableClient = account.CreateCloudTableClient();
tableClient.CreateTableIfNotExist("Messages");
TableServiceContext tcontext = new TableServiceContext(account.TableEndpoint.AbsoluteUri, account.Credentials);
var list = tableClient.ListTables().ToArray();
tcontext.AddObject("Messages", m);
tcontext.SaveChanges();
Is there any way to avoid those deserialization requirements or get the raw object?
Cheers.
If you want to use the Storage Client Library, then yes, there are restrictions on what you can and can't do with your objects that you want to store. Point 1 is correct. I'd expand point 2 to say "All properties that you want to store must be public and read/write" (for integer properties you can get away with having read only properties and it won't try to save them) but you don't actually have to inherit from TableServiceEntity.
TableServiceEntity is just a very light class that has the properties PartitionKey, RowKey, Timestamp and is decorated with the DataServiceKey attribute (take a look with Reflector). All of these things you can do to a class that you create yourself and doesn't inherit from TableServiceEntity (note that the casing of these properties is important).
If this still doesn't give you enough control over how you build your classes, you can always ignore the Storage Client Library and just use the REST API directly. This will give you the ability to searialize and deserialize the XML any which way you like. You will lose the all of the nice things that come with using the library, like ability to create queries in LINQ.
The constraints around that ADO.NET wrapper for the Table Storage are indeed somewhat painful. You can also adopt a Fat Entity approach as implemented in Lokad.Cloud. This will give you much more flexibility concerning the serialization of your entities.
Just don't use inheritance.
If you want to use your own POCO's, create your class as you want it and create a separate tableEntity wrapper/container class that holds the pK and rK and carries your class as a serialized byte array.
You can use composition to achieve what you want.
Create your Table Entities as you need to for storage and create your POCOs as wrappers on those providing the API you want the rest of your application code to see.
You can even mix in some interfaces for better code.
How about generating the POCO wrappers at runtime using System.Reflection.Emit http://blog.kloud.com.au/2012/09/30/a-better-dynamic-tableserviceentity/

Inheritance vs enum properties in the domain model

I had a discussion at work regarding "Inheritance in domain model is complicating developers life". I'm an OO programmer so I started to look for arguments that having inheritance in domain model will ease the developer life actually instead of having switches all over the place.
What I would like to see is this :
class Animal {
}
class Cat : Animal {
}
class Dog : Animal {
}
What the other colleague is saying is :
public enum AnimalType {
Unknown,
Cat,
Dog
}
public class Animal {
public AnimalType Type { get; set; }
}
How do I convince him (links are WELCOME ) that a class hierarchy would be better than having a enum property for this kind of situations?
Thanks!
Here is how I reason about it:
Only use inheritance if the role/type will never change.
e.g.
using inheritance for things like:
Fireman <- Employee <- Person is wrong.
as soon as Freddy the fireman changes job or becomes unemployed, you have to kill him and recreate a new object of the new type with all of the old relations attached to it.
So the naive solution to the above problem would be to give a JobTitle enum property to the person class.
This can be enough in some scenarios, e.g. if you don't need very complex behaviors associated with the role/type.
The more correct way would be to give the person class a list of roles.
Each role represents e.g an employment with a time span.
e.g.
freddy.Roles.Add(new Employement( employmentDate, jobTitle ));
or if that is overkill:
freddy.CurrentEmployment = new Employement( employmentDate, jobTitle );
This way , Freddy can become a developer w/o we having to kill him first.
However, all my ramblings still haven't answered if you should use an enum or type hierarchy for the jobtitle.
In pure in mem OO I'd say that it's more correct to use inheritance for the jobtitles here.
But if you are doing O/R mapping you might end up with a bit overcomplex data model behind the scenes if the mapper tries to map each sub type to a new table.
So in such cases, I often go for the enum approach if there is no real/complex behavior associated with the types.
I can live with a "if type == JobTitles.Fireman ..." if the usage is limited and it makes things easer or less complex.
e.g. the Entity Framework 4 designer for .NET can only map each sub type to a new table. and you might get an ugly model or alot of joins when you query your database w/o any real benefit.
However I do use inheritance if the type/role is static.
e.g. for Products.
you might have CD <- Product and Book <- Product.
Inheritance wins here because in this case you most likely have different state associated with the types.
CD might have a number of tracks property while a book might have number of pages property.
So in short, it depends ;-)
Also, at the end of the day you will most likely end up with a lot of switch statements either way.
Let's say you want to edit a "Product" , even if you use inheritance, you will probably have code like this:
if (product is Book)
Response.Redicted("~/EditBook.aspx?id" + product.id);
Because encoding the edit book url in the entity class would be plain ugly since it would force your business entites to know about your site structure etc.
Having an enum is like throwing a party for all those Open/Closed Principle is for suckers people.
It invites you to check if an animal is of a certain type and then apply custom logic for each type. And that can render horrible code, which makes it hard to continue building on your system.
Why?
Doing "if this type, do this, else do that" prevents good code.
Any time you introduce a new type, all those ifs get invalid if the new type is not handled. In larger systems, it's hard to find all those ifs, which will lead to bugs eventually.
A much better approach is to use small, well-defined feature interfaces (Interface segregation principle).
Then you will only have an if but no 'else' since all concretes can implement a specific feature.
Compare
if (animal is ICanFly flyer)
flyer.Sail();
to
// A bird and a fly are fundamentally different implementations
// but both can fly.
if (animal is Bird b)
b.Sail();
else if (animal is Fly f)
b.Sail();
See? the former one needs to be checked once while the latter has to be checked for every animal that can fly.
Enums are good when:
The set of values is fixed and never or very rarely changes.
You want to be able to represent a union of values (i.e. combining flags).
You don't need to attach other state to each value. (Java doesn't have this limitation.)
If you could solve your problem with a number, an enum is likely a good fit and more type safe. If you need any more flexibility than the above, then enums are likely not the right answer. Using polymorphic classes, you can:
Statically ensure that all type-specific behavior is handled. For example, if you need all animals to be able to Bark(), making Animal classes with an abstract Bark() method will let the compiler check for you that each subclass implements it. If you use an enum and a big switch, it won't ensure that you've handled every case.
You can add new cases (types of animals in your example). This can be done across source files, and even across package boundaries. With an enum, once you've declared it, it's frozen. Open-ended extension is one of the primary strengths of OOP.
It's important to note that your colleague's example is not in direct opposition to yours. If he wants an animal's type to be an exposed property (which is useful for some things), you can still do that without using an enum, using the type object pattern:
public abstract class AnimalType {
public static AnimalType Unknown { get; private set; }
public static AnimalType Cat { get; private set; }
public static AnimalType Dog { get; private set; }
static AnimalType() {
Unknown = new AnimalType("Unknown");
Cat = new AnimalType("Cat");
Dog = new AnimalType("Dog");
}
}
public class Animal {
public AnimalType Type { get; set; }
}
This gives you the convenience of an enum: you can do AnimalType.Cat and you can get the type of an animal. But it also gives you the flexibility of classes: you can add fields to AnimalType to store additional data with each type, add virtual methods, etc. More importantly, you can define new animal types by just creating new instances of AnimalType.
I'd urge you to reconsider: in an anemic domain model (per the comments above), cats don't behave differently than dogs, so there's no polymorphism. An animal's type really is just an attribute. It's hard to see what inheritance buys you there.
Most importantly OOPS means modeling reality. Inheritance gives you the opportunity to say Cat is an animal. Animal should not know if its a cat now shout it and then decide that it is suppose to Meow and not Bark, Encapsulation gets defeated there. Less code as now you do not have to do If else as you said.
Both solutions are right.
You should look which techniques applies better to you problem.
If your program uses few different objects, and doesn't add new classes, its better to stay with enumerations.
But if you program uses a lot of different objects (different classes), and may add new classes, in the future, better try the inheritance way.

Type conversion when iterating over a collection of super-type. Alternatives?

This is quite a common problem I run into. Let's hear your solutions. I'm going to use an Employee-managing application as an example:-
We've got some entity classes, some of which implement a particular interface.
public interface IEmployee { ... }
public interface IRecievesBonus { int Amount { get; } }
public class Manager : IEmployee, IRecievesBonus { ... }
public class Grunt : IEmployee /* This company sucks! */ { ... }
We've got a collection of Employees that we can iterate over. We need to grab all the objects that implement IRecievesBonus and pay the bonus.
The naive implementation goes something along the lines of:-
foreach(Employee employee in employees)
{
IRecievesBonus bonusReciever = employee as IRecievesBonus;
if(bonusReciever != null)
{
PayBonus(bonusReciever);
}
}
or alternately in C#:-
foreach(IRecievesBonus bonusReciever in employees.OfType<IRecievesBonus>())
{
PayBonus(bonusReciever);
}
We cannot modify the IEmployee interface to include details of the child type as we don't want to pollute the super-type with details that only the sub-type cares about.
We do not have an existing collection of only the subtype.
We cannot use the Visitor pattern because the element types are not stable. Also, we might have a type which implements both IRecievesBonus and IDrinksTea. Its Accept method would contain an ambiguous call to visitor.Visit(this).
Often we're forced down this route because we can't modify the super-type, nor the collection e.g. in .NET we may need to find all the Buttons on this Form via the child Controls collection. We may need to do something to the child types that depends on some aspect of the child type (e.g. the bonus amount in the example above).
Strikes me as odd that there isn't an "accepted" way to do this, given how often it comes up.
1) Is the type conversion worth avoiding?
2) Are there any alternatives I haven't thought of?
EDIT
Péter Török suggests composing Employee and pushing the type conversion further down the object tree:-
public interface IEmployee
{
public IList<IEmployeeProperty> Properties { get; }
}
public interface IEmployeeProperty { ... }
public class DrinksTeaProperty : IEmployeeProperty
{
int Sugars { get; set; }
bool Milk { get; set; }
}
foreach (IEmployee employee in employees)
{
foreach (IEmployeeProperty property in employee.Propeties)
{
// Handle duplicate properties if you need to.
// Since this is just an example, we'll just
// let the greedy ones have two cups of tea.
DrinksTeaProperty tea = property as DrinksTeaProperty;
if (tea != null)
{
MakeTea(tea.Sugers, tea.Milk);
}
}
}
In this example it's definitely worth pushing these traits out of the Employee type - particularly because some managers might drink tea and some might not - but we still have the same underlying problem of the type conversion.
Is it the case that it's "ok" so long as we do it at the right level? Or are we just moving the problem around?
The holy grail would be a variant on the Visitor pattern where:-
You can add element members without modifying all the visitors
Visitors should only visit types they're interested in visiting
The visitor can visit the member based on an interface type
Elements might implement multiple interfaces which are visited by different visitors
Doesn't involve casting or reflection
but I appreciate that's probably unrealistic.
I would definitely try to resolve this with composition instead of inheritance, by associating the needed properties/traits to Employee, instead of subclassing it.
I can give an example partly in Java, I think it's close enough to your language (C#) to be useful.
public enum EmployeeProperty {
RECEIVES_BONUS,
DRINKS_TEA,
...
}
public class Employee {
Set<EmployeeProperty> properties;
// methods to add/remove/query properties
...
}
And the modified loop would look like this:
foreach(Employee employee in employees) {
if (employee.getProperties().contains(EmployeeProperty.RECEIVES_BONUS)) {
PayBonus(employee);
}
}
This solution is much more flexible than subclassing:
it can trivially handle any combination of employee properties, while with subclassing you would experience a combinatorial explosion of subclasses as the number of properties grow,
it trivially allows you to change Employee properties runtime, while with subclassing this would require changing the concrete class of your object!
In Java, enums can have properties or (even virtual) methods themselves - I don't know whether this is possible in C#, but in the worst case, if you need more complex properties, you can implement them with a class hierarchy. (Even in this case, you are not back to square one, since you have an extra level of indirection which gives you the flexibility described above.)
Update
You are right that in the most general case (discussed in the last sentence above) the type conversion problem is not resolved, just pushed one level down on the object graph.
In general, I don't know a really satisfying solution to this problem. The typical way to handle it is using polymorphism: pull up the common interface and manipulate the objects via that, thus eliminating the need for downcasts. However, in cases when the objects in question do not have a common interface, what to do? It may help to realize that in these cases the design does not reflect reality well: practically, we created a marker interface solely to enable us to put a bunch of distinct objects into a common collection, but there is no semantical relationship between the objects.
So I believe in these cases the awkwardness of downcasts is a signal that there may be a deeper problem with our design.
You could implement a custom iterator that only iterates over the IRecievesBonus types.

Is this a ddd anti-pattern?

Is it a violation of the Persistance igorance to inject a repository interface into a Entity object Like this. By not using a interface I clearly see a problem but when using a interface is there really a problem? Is the code below a good or bad pattern and why?
public class Contact
{
private readonly IAddressRepository _addressRepository;
public Contact(IAddressRepository addressRepository)
{
_addressRepository = addressRepository;
}
private IEnumerable<Address> _addressBook;
public IEnumerable<Address> AddressBook
{
get
{
if(_addressBook == null)
{
_addressBook = _addressRepository.GetAddresses(this.Id);
}
return _addressBook;
}
}
}
It's not exactly a good idea, but it may be ok for some limited scenarios. I'm a little confused by your model, as I have a hard time believing that Address is your aggregate root, and therefore it wouldn't be ordinary to have a full-blown address repository. Based on your example, you probably are actually using a table data gateway or dao rather than a respository.
I prefer to use a data mapper to solve this problem (an ORM or similar solution). Basically, I would take advantage of my ORM to treat address-book as a lazy loaded property of the aggregate root, "Contact". This has the advantage that your changes can be saved as long as the entity is bound to a session.
If I weren't using an ORM, I'd still prefer that the concrete Contact repository implementation set the property of the AddressBook backing store (list, or whatever). I might have the repository set that enumeration to a proxy object that does know about the other data store, and loads it on demand.
You can inject the load function from outside. The new Lazy<T> type in .NET 4.0 comes in handy for that:
public Contact(Lazy<IEnumerable<Address>> addressBook)
{
_addressBook = addressBook;
}
private Lazy<IEnumerable<Address>> _addressBook;
public IEnumerable<Address> AddressBook
{
get { return this._addressBook.Value; }
}
Also note that IEnumerable<T>s might be intrinsically lazy anyhow when you get them from a query provider. But for any other type you can use the Lazy<T>.
Normally when you follow DDD you always operate with the whole aggregate. The repository always returns you a fully loaded aggregate root.
It doesn't make much sense (in DDD at least) to write code as in your example. A Contact aggregate will always contain all the addresses (if it needs them for its behavior, which I doubt to be honest).
So typically ContactRepository supposes to construct you the whole Contact aggregate where Address is an entity or, most likely, a value object inside this aggregate.
Because Address is an entity/value object that belongs to (and therefore managed by) Contact aggregate it will not have its own repository as you are not suppose to manage entities that belong to an aggregate outside this aggregate.
Resume: always load the whole Contact and call its behavior method to do something with its state.
Since its been 2 years since I asked the question and the question somewhat misunderstood I will try to answer it myself.
Rephrased question:
"Should Business entity classes be fully persistance ignorant?"
I think entity classes should be fully persistance ignorant, because you will instanciate them many places in your code base so it will quickly become messy to always have to inject the Repository class into the entity constructor, neither does it look very clean. This becomes even more evident if you are in need of injecting several repositories. Therefore I always use a separate handler/service class to do the persistance jobs for the entities. These classes are instanciated far less frequently and you usually have more control over where and when this happens. Entity classes are kept as lightweight as possible.
I now always have 1 Repository pr aggregate root and if I have need for some extra business logic when entities are fetched from repositories I usually create 1 ServiceClass for the aggregate root.
By taking a tweaked example of the code in the question as it was a bad example I would do it like this now:
Instead of:
public class Contact
{
private readonly IContactRepository _contactRepository;
public Contact(IContactRepository contactRepository)
{
_contactRepository = contactRepository;
}
public void Save()
{
_contactRepository.Save(this);
}
}
I do it like this:
public class Contact
{
}
public class ContactService
{
private readonly IContactRepository _contactRepository;
public ContactService(IContactRepository contactRepository)
{
_contactRepository = contactRepository;
}
public void Save(Contact contact)
{
_contactRepository.Save(contact);
}
}