VB.NET not seeing some classes - vb.net

One of my classes seems to be invisible to the rest of my project. I wonder if I somehow have to initialize it before I can use its public stuff.
The functions and methods of Class1 immediately appear in IntelliSense, but Class2 is treated like a general (unknown) object.
I have some Public Shared functions in Class1 and Class2. I can call functions using
Class1.myPublicSharedFunction()
normally. However when I try this with any function from Class2, I get the error:
Error 1 Option Strict On disallows late binding.
even though their types are of course declared. If I copy and paste a working function from Class1 to Class2 and try to call it, it starts giving the same error. Any test function I declare in Class2 doesn't get its type recognized and is thus accused of trying to do late binding.
Both classes are public, and all the functions mentioned are Public Shared. I don't understand what makes the classes work differently. It's as if I needed to load or compile Class2 before VB knows its function types, but these things are supposedly automatic in VB.
What could be the cause of this?
When I begin typing Class2., IntelliSense lists is as a function, while Class1 is recognized as a class.
EDIT:
If I copy the exact contents of Class2 into new class, only changing the line Public Class ... to the new name, everything works as normal. I thought it might be that the name was too long, so I copied the class to AnotherClassWithAReallyLongName, but this one worked too.
However, if I delete class2, and re-add it and paste back its contents, it still won't work.

As per comment you have something else in your code named `Class2’ that is hiding your new class definition. Remove it/rename it and your class will work.

Related

Using interface function defined in DLL

I'm using an interface defined in a DLL.
When I call...
m.GetMasterVolumeLevelScalar(btVol)
... I get a Null Reference Exception because "m" is nothing.
However, I can't use "new" on this interface.
How would I use this interface correctly?
I did read on implements, but I didn't find an example similar to this interface.
Thank you.
Edit: I know now that I need to type
Implements Vannatech.CoreAudio.Interfaces.IAudioEndpointVolume
and the functions will automatically be added to my class.
However, I'm not sure what to do with the NonImplementedException for example here:
Public Function GetMasterVolumeLevelScalar(ByRef level As Single) As Integer Implements IAudioEndpointVolume.GetMasterVolumeLevelScalar
Throw New NotImplementedException()
End Function
I got it:
I simply need to type
Implements Vannatech.CoreAudio.Interfaces.IAudioEndpointVolume
By doing that, all functions will automatically be added to the class in which I typed this.
I just didn't scroll down enough to see that.

Do I understand not using getters and setters correctly

After reading this piece by Yegor about not using getters and setters, it sounds like something that makes sense to me.
Please note this question is not about whether doing it is better/worst, only if I am implementing it correctly
I was wondering in the following two examples in VBA, if I understand the concept correctly, and if I am applying it correctly.
The standard way would be:
Private userName As String
Public Property Get Name() As String
Name = userName
End Property
Public Property Let Name(rData As String)
userName = rData
End Property
It looks to me his way would be something like this:
Private userName As String
Public Function returnName() As String
returnName = userName
End Function
Public Function giveNewName(newName As String) As String
userName = newName
End Function
From what I understand from the two examples above is that if I wanted to change the format of userName (lets say return it in all-caps), then I can do this with the second method without changing the name of the method that gives the name through - I can just let returnName point to a userNameCaps property. The rest of my code in my program can still stay the same and point to the method userName.
But if I want to do this with the first example, I can make a new property, but then have to change my code everywhere in the program as well to point to the new property... is that correct?
In other words, in the first example the API gets info from a property, and in the second example the API gets info from a method.
Your 2nd snippet is neither idiomatic nor equivalent. That article you link to, is about Java, a language which has no concept whatsoever of object properties - getFoo/setFoo is a mere convention in Java.
In VBA this:
Private userName As String
Public Property Get Name() As String
Name = userName
End Property
Public Property Let Name(rData As String)
userName = rData
End Property
Is ultimately equivalent to this:
Public UserName As String
Not convinced? Add such a public field to a class module, say, Class1. Then add a new class module and add this:
Implements Class1
The compiler will force you to implement a Property Get and a Property Let member, so that the Class1 interface contract can be fulfilled.
So why bother with properties then? Properties are a tool, to help with encapsulation.
Option Explicit
Private Type TSomething
Foo As Long
End Type
Private this As TSomething
Public Property Get Foo() As Long
Foo = this.Foo
End Property
Public Property Let Foo(ByVal value As Long)
If value <= 0 Then Err.Raise 5
this.Foo = value
End Property
Now if you try to assign Foo with a negative value, you'll get a runtime error: the property is encapsulating an internal state that only the class knows and is able to mutate: calling code doesn't see or know about the encapsulated value - all it knows is that Foo is a read/write property. The validation logic in the "setter" ensures the object is in a consistent state at all times.
If you want to break down a property into methods, then you need a Function for the getter, and assignment would be a Sub not a Function. In fact, Rubberduck would tell you that there's a problem with the return value of giveNewName being never assigned: that's a much worse code smell than "OMG you're using properties!".
Functions return a value. Subs/methods do something - in the case of an object/class, that something might imply mutating internal state.
But by avoiding Property Let just because some Java guy said getters & setters are evil, you're just making your VBA API more cluttered than it needs to be - because VBA understands properties, and Java does not. C# and VB.NET do however, so if anything the principles of these languages would be much more readily applicable to VBA than Java's, at least with regards to properties. See Property vs Method.
FWIW public member names in VB would be PascalCase by convention. camelCase public member names are a Java thing. Notice how everything in the standard libraries starts with a Capital first letter?
It seems to me that you've just given the property accessors new names. They are functionally identical.
I think the idea of not using getters/setters implies that you don't try to externally modify an object's state - because if you do, the object is not much more than a user-defined type, a simple collection of data. Objects/Classes should be defined by their behavior. The data they contain should only be there to enable/support that behavior.
That means you don't tell the object how it has to be or what data you want it to hold. You tell it what you want it to do or what is happening to it. The object itself then decides how to modify its state.
To me it seems your example class is a little too simple to work as an example. It's not clear what the intended purpose is: Currently you'd probably better off just using a variable UserName instead.
Have a look at this answer to a related question - I think it provides a good example.
Regarding your edit:
From what I understand from the two examples above is that if I wanted
to change the format of userName (lets say return it in all-caps),
then I can do this with the second method without changing the name of
the method that gives the name through - I can just let returnName
point to a userNameCaps property. The rest of my code in my program
can still stay the same and point to the method iserName.
But if I want to do this with the first example, I can make a new
property, but then have to change my code everywhere in the program as
well to point to the new property... is that correct?
Actually, what you're describing here, is possible in both approaches. You can have a property
Public Property Get Name() As String
' possibly more code here...
Name = UCase(UserName)
End Property
or an equivalent function
Public Function Name() As String
' possibly more code here...
Name = UCase(UserName)
End Function
As long as you only change the property/function body, no external code needs to be adapted. Keep the property's/function's signature (the first line, including the Public statement, its name, its type and the order and type of its parameters) unchanged and you should not need to change anything outside the class to accommodate.
The Java article is making some sort of philosophic design stance that is not limited to Java: The general advise is to severely limit any details on how a class is implemented to avoid making one's code harder to maintain. Putting such advice into VBA terms isn't irrelevant.
Microsoft popularized the idea of a Property that is in fact a method (or two) which masquerade as a field (i.e. any garden-variety variable). It is a neat-and-tidy way to package up a getter and setter together. Beyond that, really, behind the scenes it's still just a set of functions or subroutines that perform as accessors for your class.
Understand that VBA does not do classes, but it does do interfaces. That's what a "Class Module" is: An interface to an (anonymous) class. When you say Dim o As New MyClassModule, VBA calls some factory function which returns an instance of the class that goes with MyClassModule. From that point, o references the interface (which in turn is wired into the instance). As #Mathieu Guindon has demonstrated, Public UserName As String inside a class module really becomes a Property behind the scenes anyway. Why? Because a Class Module is an interface, and an interface is a set of (pointers to) functions and subroutines.
As for the philosophic design stance, the really big idea here is not to make too many promises. If UserName is a String, it must always remain a String. Furthermore, it must always be available - you cannot remove it from future versions of your class! UserName might not be the best example here (afterall, why wouldn't a String cover all needs? for what reason might UserName become superfluous?). But it does happen that what seemed like a good idea at the time the class was being made turns into a big goof. Imagine a Public TwiddlePuff As Integer (or instead getTwiddlePuff() As Integer and setTwiddlePuff(value As Integer)) only to find out (much later on!) that Integer isn't sufficient anymore, maybe it should have been Long. Or maybe a Double. If you try to change TwiddlePuff now, anything compiled back when it was Integer will likely break. So maybe people making new code will be fine, and maybe it's mostly the folks who still need to use some of the old code who are now stuck with a problem.
And what if TwiddlePuff turned out to be a really big design mistake, that it should not have been there in the first place? Well, removing it brings its own set of headaches. If TwiddlePuff was used at all elsewhere, that means some folks may have a big refactoring job on their hands. And that might not be the worst of it - if your code compiles to native binaries especially, that makes for a really big mess, since an interface is about a set of function pointers layed out and ordered in a very specific way.
Too reiterate, do not make too many promises. Think through on what you will share with others. Properties-getters-setters-accessors are okay, but must be used thoughtfully and sparingly. All of that above is important if what you are making is code that you are going to share with others, and others will take it and use it as part of a larger system of code, and it may be that these others intend to share their larger systems of code with yet even more people who will use that in their even larger systems of code.
That right there is probably why hiding implementation details to the greatest extent possible is regarded as fundamental to object oriented programming.

Late Binding in VB

From what I have read so far, late binding is defining a variable as Object and then assigning it to the actual object later which is actually done at run time. I don't understand the point to that. Maybe this is the Java in me, but doesn't that limit the functionality to what is just in Object? It is like saying, "I want the potential of the extra stuff, but I don't want to have access to it." Is there an actual purpose for late binding in VB, or Java for that matter, that I'm overlooking?
You have it backwards. By using early binding you are limiting yourself to just the members of the type of the variable. With Option Strict On, a variable declared as type Object will only allow you access to members of type Object, regardless of the type of the actually object it refers to. With Option Strict Off, you can access a member of any name on a variable of type Object and the compiler won't complain. It's only at run time that any type checking is done so, as long as the actual object assigned to the variable has a member with that name, the code will run.
Probably the most common use for late binding is Office Automation. There are other options now but, in the past, if you referenced an Office library and used the specific types it contained, facilitating early binding, then you were limited to that specific version of Office. In order to support multiple versions, you had to forgo the reference, declare all your variables as type Object and use late binding. As long as the version of Office present at run time included the specified members on the objects used, the code would run without issue.
By the way, late binding doesn't require using type Object, although it is probably the most common. It just means that the reference is a less derived type than the object and you use a member of the object's type that the reference's type doesn't have, e.g. you use type Control and then use a member specific to type Button.
What I seen - some early .NET adapters-developers were doing is - they were using late binding instead on interfaces. They would declare two or more types
Public Class Handler1
Public Sub Execute()
' do something
End Sub
End Class
Public Class Handler2
Public Sub Execute()
' do something else
End Sub
End Class
And they would stick this thing into session object
If someting = 1 Then
Session("Handler") = New Handler1()
Else
Session("Handler") = New Handler2()
End If
And then, to process something they would do
Session("Handler").Execute()
There we go. This is not pretty or smart. But that was instead of proper programming like this (Imagine handlers implement IHandler interface with method Execute)
Dim h As IHandler = TryCast(Session("Handler"), IHandler)
If h IsNot Nothing Then
h.Execute()
End If
Here is where downfall of late binding starts: In the case of late binding, someone, somewhere, can rename a method Execute and compile code nicely. Release. And only then, at runtime, get a problem.
Late binding was good when we used to deal with interop and COM. Other than this, it is detrimental.

Can I provide a better name for a pre-defined class

I have a class that has been pre-defined by an XSD but the name is long and confusing. I can't rename the class directly. Is there a way to create a new class with a better name and inherit the poorly named one without having to write a bunch of setters and getters since the XSD could potentially change over time?
I tried just creating an empty class like this:
Public Class TaskDetails : Inherits ExternalResponseTaskDetailTaskDetail
End Class
And that would work fine, except I get a casting error when I try to
Dim td as TaskDetails = ertdtd
This seems like I'm asking a very stupid question, but try as I might, I can't get my Google-Fu working for me on it. The long class name does make sense inside the library I'm working in, but outside the library, it really doesn't. Especially since the library contains an ExternalRequestTaskDetails class and ExternalRequestTaskDetailsTaskDetails is an element contained within it.

How to implement an interface in VB.Net when two methods have the same name but different parameters

I am a C# programmer but I have to work with some VB.Net code and I came across a situation where I have two methods on an interface with the same name but different method parameters. When I attempt to implement this interface in a class, VB.Net requires explicitly declaring "Implements MethodName" after the method signature. Since both method names are identical, this is confusing the compiler. Is there a way to get around this sort of problem? I suspect this must be a common occurrence. Any thoughts?
N.B. This was more a case of the programmer not verifying that the interface in question had not changed from underneath him.
How is this confusing the compiler?
The compiler expects to find an implementation for every method signature, and distinguishes the implementations by their signatures.
If the signatures are identical/undistinguishable (in most cases it means that the arguments are of the same types in the same order) you'll get a design-time error related to the interface, saying that the two methods cannot overload eachother as they have the same signature.
So, in any case, the compiler should not be confused.
Should you need further assistance, please attach a code sample - these things are relatively easy to resolve.
Tip: When writing the implementation, as soon as you write down "implements MyInterface" and hit Enter - Visual Studio will create a "skeleton" code of the implementation, which saves you writing the method signatures and correlating them to the interface.
Example code of having two methods with the same name and everythign working well:
Interface MyInterface
Sub MySub(ByVal arg0 As DateTime)
Sub MySub(ByVal arg0 As ULong)
End Interface
Class MyImplementation
Implements MyInterface
Public Sub MySub(ByVal arg0 As Date) Implements MyInterface.MySub
...
End Sub
Public Sub MySub(ByVal arg0 As ULong) Implements MyInterface.MySub
...
End Sub
End Class
You can make the method private and give it another name.
Like:
Private Sub SaveImpl(ByVal someEntity As IEntity) Implements IRepository.Save
this will look to the outside like: someRepository.Save