Objects creation and instantiation in objective-c - objective-c

Given the piece of code below where blueViewController is an iVar.
Question: Why not instantiate the iVar directly?
BlueViewController *blueController = [[BlueViewController alloc]initWithNibName:#"BlueView" bundle:nil];
self.blueViewController = blueController;
[blueController release];

It depends on where you are in your class. If you are in your init (and dealloc) method it is recommended to refer to the ivar directly to avoid any side effects in setter logic. Therefore in the init I would do
_blueViewController = [[BlueViewController alloc] initWithNibName:#"BlueView" bundle:nil];
But anywhere else I would do it how you have done it. Then if there is any custom logic in the getter/setter I know it will be run.
To eleborate on #Vladimar's point the synthesized setter for a retain will do some memory management similar to this:
- (void)setMyObject:(MyObject *)newMyObject
{
// If it's the same object we don't need to do anything
if (_myObject != newMyObject) {
[newMyObject retain];
[_myObject release];
_myObject = newMyObject;
}
}
It is much safer to let the getters/setters worry about all this logic any time you set your ivars.

You can initialise iVar directly, but the code you have also handles memory management for the previous blueViewController value. Accessing iVar directly you'll have to release previous value manually before assigning new one.

You can do it all on one line if you want. The important thing is to balance the +alloc with a -release or -autorelease. So, you can say:
self.blueViewController = [[[BlueViewController alloc] initWithNibName:#"BlueView" bundle:nil] autorelease];
That's fine, but some folks prefer to avoid -autorelease, and some folks just prefer simpler steps and/or shorter lines of code. Using an intermediate variable as you've done helps in that respect, and it doesn't cost anything.

It depends on whether the property is retain or not. Most object properties are retained; this is what a retain property looks like:
- (void)setBlueViewController:(BlueViewController *)bvc {
if (bvc != blueViewController) { // blueViewController is local ivar
[blueViewController release];
blueViewController = [bvc retain];
}
}
So what you're doing up there is creating a retain count of +2. When you init, that's a +1; the property then retains it, bumping it up to +2. Your dealloc releases it once, which brings it down to +1...and you've leaked that property. Because you are alloc/init-ing the variable, you don't want to use the setter; instead, assign it directly to the instance variable.
By instantiating it directly, it saves you the trouble of that other release—fewer lines of code means fewer errors. You might, for example, have typed retain by accident and not realized it until your program crashes because you retained a massive class...
Of course, as Caleb says you could autorelease, but that's effectively letting the object lie around in memory until the run loop is finished. It's much easier, and gives you more control, to just not worry about that. There's nothing wrong with assigning the alloc/init to the ivar; in fact, that's the best way to do it.

Related

iOS block release and self retain cycle

Im doing some research on blocks,
the code here
typedef NSString* (^MyBlock)(void);
#property(copy,nonatomic) MyBlock block1;
in viewdidload
self.block1 = ^{
self
NSLog(#"do block");
return #"a";
};
of course the self is retained, then I do a
self.block = nil;
by checking the retain count of self, I found it reduced by 1, no retain cycle.
I believe this is the correct situation, the block retains self, when release the block, self gets released. retaincount reduced.
I made a litte change, and things coms strange:
make block a local variable.
in viewdidload
MyBlock block1 = ^{
self
NSLog(#"do block");
return #"a";
};
[block copy]; // retain count of self gets added.
[block release]; // retain count of sell still the same
why? I tried Block_release(), its the same. and when putting a local variable like NSArray in the block, the retain count fellows the same rule as self.
there must be some thing different inside of #property, anyone researched this before?
pls help.
Additionally, I do this in ARC, a local variable block will made the retain cycle, and a instance variable didnt, due to the autorelease, it holds the self, and few seconds later, it released and self object get released normally.
is it because the instance variable and local variable are alloc on different parts in memory? stack ? heap?, are they both copied to heap when do a [block copy]?
EDIT :
not instance variable and local variable. using #property makes it different, any explanations?
The problem is that using retainCount to figure out things like this is futile. The retainCount will not reflect autorelease state and the compiler -- the ARC compiler, in particular -- may generate different code (in particular, the optimizer has a tendency to eliminate unnecessary retain/autorelease pairs).
Use the Allocations Instrument and turn on reference event tracking. Then you can look at each retain/release event on the object, the exact stack trace where it happened, and know exactly what is going on.
Under non-ARC, when you assign to an iVar, nothing happens. When you go through the setter, a retain setter will cause the object to be retaind. Under ARC, a block will be copied to the heap automatically in a number of cases, triggering a retain of the captured object when the block is copied.
http://www.whentouseretaincount.com/

Basic memory management confusion

I bet that I could find the answer of this question from reading similar threads here or by googling, but I would like "hear" it first hand so to speak because it's an anomaly in my understanding.
So here's the thing, I have some code which a previous employee wrote and I see a lot of a certain type of construct which looks rather odd to me and I just want to clarify what is "right and wrong".
For example
- (void) setWwanServiceId: (NSString *) newValue {
[wwanServiceId autorelease];
wwanServiceId = [newValue copy];
}
Here wwanServiceIdis a NSString member of the class, and to me this seem like a strange way to do it. As far as I understand it would begin by putting an autorelease on the object, basically saying: "whenever this object seem to not be used, release it for me I don't really care" then the copy will up the retain count +1 on.... wwanServiceId? or newValue? I guess the first.
Then to make me all more confused let's just quickly run through the life-cycle of the wwanServiceId-string..
basically the value will be set if we receive a notification which then from the notification-handler method will call the above -setWwanServiceId: method. other than that it will only ever be accessed for reading, so we are safe to say that it will at any given point:
put autorelease on object
retain a new string copy
Then there is one more quirk to this and this is where I am getting rather suspicious, namely in the -dealloc method which looks like this:
- (void) dealloc {
[[self wwanServiceId] release];
[super dealloc];
}
So what happens there? it will afaik release the wwanServiceId and as I said the only time it's memory management is being touched (if I haven't missed anything but I feel pretty sure) is to put an autorelease and retain it.
So to summarize:
Is the idea here that he thought that since he always retain a new copy after putting autorelease he need to release it in the end.. or well it's the only thing I can think about. Or just felt it would be safe to do an extra release in the end just in case..?
Because as far as I understand it, if this setter is called one time it will put an autorelease (-1 in future), do a retain (+1) and when destructor is called it will do the "final release" (-1).
Any ideas or suggestions helping me understand (if in fact I am wrong and the memory handling is correct as is) would be appreciated.
You wrote:
Here wwanServiceIdis a NSString member of the class, and to me this seem like a strange way to do it. As far as I understand it would begin by putting an autorelease on the object, basically saying: "whenever this object seem to not be used, release it for me I don't really care" then the copy will up the retain count +1 on.... wwanServiceId? or newValue? I guess the first.
This seems to point to the source of your confusion. wwanServiceId is a variable which can contain a reference to an object of type NSString. Variables do not have reference counts only objects do.
The previous employee wrote:
- (void) setWwanServiceId: (NSString *) newValue {
[wwanServiceId autorelease];
wwanServiceId = [newValue copy];
}
The expression [wwanServiceId autorelease] means: read the reference stored in wwanServiceId and autorelease the object that reference refers to - let's call that object A. Important: This does not delete object A; it will be released as some later stage and if at that time there are no remaining references object A will be deleted.
The expression [newValue copy] means: read the reference stored in newValue, use that to locate the object (call it object B), make a copy of that object to produce a new object (call it object C), and return a reference to the new object. This new object is owned by the caller of copy, so there is no need to retain it.
Finally the assignment stores the reference to object C into wwanServiceId.
So there is a maximum of three distinct objects involved:
A: the original object referenced by wwanServiceId, this is autoreleased to remove the ownership of wwanServiceId.
B: the object referenced by newValue, this is left untouched
C: a newly created copy of B owned through wwanServiceId
Why "autorelease" in the code and "maximum of three distinct" above?
The method could be called with newValue referencing object A, e.g. as in:
[self setWwanServiceId:[self wwanServiceId]]
If this was to occur and (a) release was used instead of autorelease and (b) there was no other reference to object A then the release would delete object A and then when [newValue copy] was evaluated newValue would be referencing a deleted object... The use of autorelease in this case delays the deletion until after the copy.
So what the previous employee wrote is not in any way "wrong", but as some of the other answer suggest it may be an unusual style. Another way you see this written is:
- (void) setWwanServiceId: (NSString *) newValue
{
NSString *oldValue = wwanServiceId;
wwanServiceId = [newValue copy];
[oldValue release];
}
which also ensures any deletion occurs after the copy.
HTH.
To be short and helpful:
This is wrong:
- (void) setWwanServiceId: (NSString *) newValue {
[wwanServiceId autorelease];
wwanServiceId = [newValue copy];
}
This is right:
- (void) setWwanServiceId: (NSString *) newValue {
if (newValue != wwanServiceId) {
[wwanServiceId release];
wwanServiceId = [newValue copy];
}
}
To explain in short:
[wwanServiceId autorelease]; is an unnecessary sent message, because autoreleasing an object will reduce the retain count at some unknown point in the future. And in the next line you are wwanServiceId = [newValue copy]; instantly setting the instance variable. So, in your memory you now have a to be autoreleased object and a new object. One of them is too much The new object is, where the pointer of your IVar is pointing to. The old one is swimming in your Memory Pool with probably no reference to it :-)
Autorelease as few as possible or use ARC.
Oh: And in the dealloc method, please do not send the message like this:
[[self wwanServiceId] release];
Better like this:
[wwanServiceId release];
as Apple recommends to work directly with instance methods in init and dealloc methods, instead of using getters and setters there.
Debug it and have a look.
[wwanServiceId autorelease];
wwanServiceId has an address. This statement does not change it. It does decrement the retain count of this object though.
Thats it.
wwanServiceId = [newValue copy];
This statement creates a new object. The new object is a copy of newValue. Compare the addresses of the objects and you will see, that the address inn wwanServiceId will vary from the address of newValue and it will vary from the address that wwanServiceId did have just before the statement was executed.
The retain, that is implicit in copy will affect wwanServiceId, but it affects the new object, that was just creaed with copy. It does not affect the wwanServiceId object which was autoreleased during the statement before.
At some point after the execution of setWwanServiceId had finished, the old and autoreleased object will dissappear. (Assuming that the retain count is 0 now. If it is >0 because it is still retained for other reasons or just for error, then it will remain and potentially cause a leak.)
Once you understood that you will not question any more what is happening in the dealloc method. wwanServiceId is released. Meaning its retain count is reduced by 1. In the event that it is 0 then it will be deallocated automatically.
You could even autorelease it there too. The diffrerence to autorelease is basically that an autoreleased object is still around and available while the current method is being executed. Its release comes into effect at some later point in time.
But there is no reason for autoreleasing the object in dealloc.
In the example given there is not even a good reason to autorelease the object in the setter setWwanServiceId. You may well release the object directly in both methods.
Assuming wwanServiceId is the private ivar mapped by the getter wwanServiceId and setter setWwanServiceId, I think it is not correct to autorelease the ivar in the setter.
I would have coded the following:
- (void) setWwanServiceId: (NSString *) newValue {
if (newValue != wwanServiceId) {
[wwanServiceId release];
wwanServiceId = [newValue copy];
}
}
What I mean is: it is not necessary to give ownership of your var to the autorelease pool (which it may be drained at the end of the application). Simply release the ivar. If someone is using it, no problem, it will have a strong reference to it. Otherwise it will be deallocated.

In objective c can a class essentially delete itself?

In objective c, suppose I have an object Obj stored in a NSMutableArray, and the array's pointer to it is the only strong pointer to Obj in the entire program. Now suppose I call a method on Obj and I run this method in another thread. In this method, if Obj sets the pointer for itself equal to nil will it essentially delete itself? (Because there will be no more strong pointers left) I suspect the answer is no, but why? If this does work, is it bad coding practice (I assume its not good coding, but is it actually bad?)
It is highly unlikely that an object would be in a position to cause its own release/deallocation if your code is designed properly. So yes, the situation you describe is indicative of bad coding practice, and can in fact cause the program to crash. Here is an example:
#interface Widget : NSObject
#property (retain) NSMutableArray *array;
#end
#implementation Widget
#synthesize array;
- (id)init
{
self = [super init];
if(self) {
array = [[NSMutableArray alloc] init];
[array addObject:self];
}
return self;
}
- (void)dealloc
{
NSLog(#"Deallocating!");
[array release];
[super dealloc];
}
- (void)removeSelf
{
NSLog(#"%d", [array count]);
[array removeObject:self];
NSLog(#"%d", [array count]);
}
#end
and then this code is in another class:
Widget *myWidget = [[Widget alloc] init];
[myWidget release]; // WHOOPS!
[myWidget removeSelf];
The second call to NSLog in removeSelf will cause an EXC_BAD_ACCESS due to the fact that array has been deallocated at that point and can't have methods called on it.
There are at least a couple mistakes here. The one that ultimately causes the crash is the fact that whatever class is creating and using the myWidget object releases it before it is finished using it (to call removeSelf). Without this mistake, the code would run fine. However, MyWidget shouldn't have an instance variable that creates a strong reference to itself in the first place, as this creates a retain cycle. If someone tried to release myWidget without first calling removeSelf, nothing would be deallocated and you'd probably have a memory leak.
If your back-pointer is weak (which it should be since a class should never try to own it's owner, you will end up with a retain-cycle) and you remove the strong pointer from the array the object will be removed from the heap. No strong pointers = removed from memory.
You can always test this.
If you need a class to bring to a situation where its deleted, the best practice is to first retain/autorelease it and then make the situation happen. In this case the class won't be deleted in a middle of its method, but only afterwards.
I think we can say it might be bad coding practice, depending on how you do it. There are ways you could arrange to do it safely, or probably safely.
So let's assume we have a global:
NSMutableArray *GlobalStore;
One approach is to remove yourself as your final action:
- (void) someMethod
{
...
[GlobalStore removeObject:self];
}
As this is the final action there should be no future uses of self and all should be well, probably...
Other options include scheduling the removal with a time delay of 0 - which means it will fire next time around the run loop (only works of course if you have a run loop, which in a thread you may not). This should always be safe.
You can also have an object keep a reference to itself, which produces a cycle and so will keep it alive. When its ready to die it can nil out its own reference, if there are no other references and that is a final action (or a scheduled action by another object) then the object is dead.

Why shouldn't I use the getter to release a property in objective-c?

I was told by a fellow StackOverflow user that I should not use the getter method when releasing a property:
#property(nonatmic, retain) Type* variable;
#synthesize variable;
// wrong
[self.variable release];
// right
[variable release];
He did not explain in detail why. They appear the same to me. My iOS book said the getter on a property will look like this:
- (id)variable {
return variable;
}
So doesn't this mean [self variable], self.variable, and variable are all the same?
For a retained property with no custom accessor, you can release the object by:
self.variable = nil;
This has the effect of setting the ivar (which may not be called 'variable' if you have only declared properties) to nil and releasing the previous value.
As others have pointed out, either directly releasing the ivar (if available) or using the method above is OK - what you must not do is call release on the variable returned from a getter.
You can optionally write custom getter behavior, which may result in completely different behavior. So, you cannot always assume that [variable release] has the same results as [self.variable release].
As well, you can write custom properties without an exclusive ivar backing them... it can get messy fast if you start releasing objects from references returned by getters!
There may be additional reasons that I'm unaware of...
A typical getter will look more like this:
- (id)variable {
return [[variable retain] autorelease];
}
So if you use [self.variable release] you have an additional retain and autorelease that you don't really need when you just want to release the object and that cause the object to be released later than necessary (when the autorelease pool is drained).
Typically, you would either use self.variable = nil which has the benefit that it also sets the variable to nil (avoiding crashes due to dangling pointers), or [variable release] which is the fastest and may be more appropriate in a dealloc method if your setter has custom logic.
not all getters take this form:
- (id)variable { return variable; }
...that is merely the most primitive form. properties alone should suggest more combinations, which alter the implementation. the primitive accessor above does not account for idioms used in conjunction with memory management, atomicity, or copy semantics. the implementation is also fragile in subclass overrides.
some really brief examples follow; things obviously become more complex in real programs where implementations become considerably more complex.
1) the getter may not return the instance variable. one of several possibilities:
- (NSObject *)a { return [[a copy] autorelease]; }
2) the setter may not retain the instance variable. one of several possibilities:
- (void)setA:(NSObject *)arg
{
...
a = [arg copy];
...
}
3) you end up with memory management implementation throughout your program, which makes it difficult to maintain. the semantics of the class (and how it handles instance variables' ref counting) should be kept to the class, and follow conventions for expected results:
- (void)stuff:(NSString *)arg
{
const bool TheRightWay = false;
if (TheRightWay) {
NSMutableString * string = [arg mutableCopy];
[string appendString:#"2"];
self.a = string;
[string release];
// - or -
NSMutableString * string = [[arg mutableCopy] autorelase];
[string appendString:#"2"];
self.a = string;
}
else {
NSMutableString * string = [arg mutableCopy];
[string appendString:#"2"];
self.a = string;
[self.a release];
}
}
failing to follow these simple rules makes your code hard to maintain and debug and painful to extend.
so the short of it is that you want to make your program easy to maintain. calling release directly on a property requires you to know a lot of context of the inner workings of the class; that's obviously bad and misses strong ideals of good OOD.
it also expects the authors/subclassers/clients to know exactly how the class deviates from convention, which is silly and time consuming when issues arise and you have to relearn all the inner details when issues arise (they will at some point).
those are some trivial examples of how calling release on the result of a property introduces problems. many real world problems are much subtler and difficult to locate.

Balance retain with release?

I am just curious, do I need to add a further [name release] elsewhere to match up with the retain here in the getter?
- (NSString *)name {
return [[name retain] autorelease];
}
gary
No, but you shouldn't need to do this at all since you are not allocating anything. You could simply return name and that should be fine. Was there a reason you needed to add this retain/autorelease?
A little more explanation, what is happening here is that your retain count goes up by one when you do a retain, and then down by 1 when the scope exists because of the autorelease.
I don't know how your variable definition is in your class but the rule is that in your getter you should return the object unchanged for the reference count. It's the responsability of the caller to call retain if it want to keep a reference on it.
- (NSString*) name {
return name;
}
// caller
NSString* name = object.name;
[name retain]; // if necessary. If the string is used only in the context of a method you do not have to retain it.
If you are using the returned value as a field in another class you should define your field like this:
#property(retain, nonatomic) NSString* name;
With this a retain will be called when you assign to the variable.
No, this is fine. autorelease will cause the value to be released when the current autorelease pool is drained.
Every retain must be matched with exactly 1 of either release or autorelease.
However, I believe both the retain and autorelease are unneeded here. Generally you want to use that autorelease idiom because you've alloc'ed something in the method.
No. The autorelease will balance it out. I don't think, however, that the retain and autorelease would be necessary. You can simply use return name.
As others have said, you do not need to retain or autorelease the property. Since callers of the 'getter' method did not create the object, they do not own it, and you are safe to assume that they won't tinker around with its retain count.
But, callers could potentially change the value of the variable returned by the getter, which would affect the object. Therefore, it would probably be a better idea to return a copy of your variable, especially since it is an NSString. (Getters for NSString objects often return a copy.)
- (NSString *)name {
return [[name copy] autorelease];
}
In this scenario, you are creating a copy of the variable, so you 'own' it. By autoreleasing it before it is returned, you ensure that it will survive long enough to be used in the caller's scope, and that any changes they make to the 'name' variable will not affect the underlying object.
I am just curious, do I need to add a further [name release] elsewhere to match up with the retain here in the getter?
- (NSString *)name {
return [[name retain] autorelease];
}
No, because you are already releasing it. autorelease just means “send yourself release later”.
I think you should review the memory-management rules.
I think I might have figured it out:
if [myString] is created outside the method then your safe to use ...
return myString;
if on the other hand [myString] is created inside the method and therefore needs to be released and returned, then you use.
myString = [[NSString alloc] initWithFormat: #"Send me home"];
return [myString autorelease];
This way the method sets [myString] to autorelease, Basically the object is created, set to autorelease and returned. The object will ultimately be released when the pool is destroyed.