Is it ok to have a non persistent variable in an entity? - orm

When using an ORM, is it breaking some kind of good practice to have a model class with a few non-persistent properties, which are only used for calculations, and then can be safely dropped?
Let's say we have a Product. This Product has list of possible Options. An Option may have a price impact on the Product. We also have a set of Rules, which say that when one Option is selected, then the price of another Option changes.
When we add a Product to an Order, along with a selection of Options, we first need to recalculate the price of all the Options based on the rules affecting each selected Option. Then we can calculate the final price of the Product with all its selected Options.
In this example, the Option could have a calculatedPrice property, which would only have meaning within the context of the selected Options, and could be safely dropped after the Product has been added to the Order.
Is there a more correct way to think about this problem, or is that ok?

Yes, it is perfectly fine to have #Transient properties.
Some people may consider it wrong and insist on having a separate class that is almost the same as the entity, but having the additional fields, but that is unnecessary code duplication. Your approach is what I'd do.

The other approach, which is used in a large and ghastly e-commerce system i work with, is to have a parallel structure of transient objects containing the computed information. So, in parallel to the Order, there is an OrderPrice. For each Item in the order, there is an ItemPrice. If an Item has a set of Options, then the ItemPrice will have a set of OptionPrices. The Order's ShippingOption also has a ShippingPrice, and so on. Pricing is then handled by another parallel structure of price calculators - you give an Order to an OrderPriceCalculator, and it gives you back an OrderPrice. In doing so, it will send each Item to the ItemPriceCalculator, which will send each Option to the OptionPriceCalculator, and so on.
The price objects can refer to the order objects, but not vice versa. Our system does actually persist the prices, but separately from the orders.
The advantage of this is that it separates the concerns of describing the contents of an order, describing the price of an order, and calculating the price of an order.
The disadvantage is that you have a huge number of classes, and the information you need is, inevitably, never in the objects you have to hand.
The disadvantage probably outweighs the advantage.

Related

Is it better to use entity-arrtibute-value model over storing various different product in single description text column? [duplicate]

It is safe to say that the EAV/CR database model is bad. That said,
Question: What database model, technique, or pattern should be used to deal with "classes" of attributes describing e-commerce products which can be changed at run time?
In a good E-commerce database, you will store classes of options (like TV resolution then have a resolution for each TV, but the next product may not be a TV and not have "TV resolution"). How do you store them, search efficiently, and allow your users to setup product types with variable fields describing their products? If the search engine finds that customers typically search for TVs based on console depth, you could add console depth to your fields, then add a single depth for each tv product type at run time.
There is a nice common feature among good e-commerce apps where they show a set of products, then have "drill down" side menus where you can see "TV Resolution" as a header, and the top five most common TV Resolutions for the found set. You click one and it only shows TVs of that resolution, allowing you to further drill down by selecting other categories on the side menu. These options would be the dynamic product attributes added at run time.
Further discussion:
So long story short, are there any links out on the Internet or model descriptions that could "academically" fix the following setup? I thank Noel Kennedy for suggesting a category table, but the need may be greater than that. I describe it a different way below, trying to highlight the significance. I may need a viewpoint correction to solve the problem, or I may need to go deeper in to the EAV/CR.
Love the positive response to the EAV/CR model. My fellow developers all say what Jeffrey Kemp touched on below: "new entities must be modeled and designed by a professional" (taken out of context, read his response below). The problem is:
entities add and remove attributes weekly (search keywords dictate future attributes)
new entities arrive weekly (products are assembled from parts)
old entities go away weekly (archived, less popular, seasonal)
The customer wants to add attributes to the products for two reasons:
department / keyword search / comparison chart between like products
consumer product configuration before checkout
The attributes must have significance, not just a keyword search. If they want to compare all cakes that have a "whipped cream frosting", they can click cakes, click birthday theme, click whipped cream frosting, then check all cakes that are interesting knowing they all have whipped cream frosting. This is not specific to cakes, just an example.
There's a few general pros and cons I can think of, there are situations where one is better than the other:
Option 1, EAV Model:
Pro: less time to design and develop a simple application
Pro: new entities easy to add (might even
be added by users?)
Pro: "generic" interface components
Con: complex code required to validate simple data types
Con: much more complex SQL for simple
reports
Con: complex reports can become almost
impossible
Con: poor performance for large data sets
Option 2, Modelling each entity separately:
Con: more time required to gather
requirements and design
Con: new entities must be modelled and
designed by a professional
Con: custom interface components for each
entity
Pro: data type constraints and validation simple to implement
Pro: SQL is easy to write, easy to
understand and debug
Pro: even the most complex reports are relatively simple
Pro: best performance for large data sets
Option 3, Combination (model entities "properly", but add "extensions" for custom attributes for some/all entities)
Pro/Con: more time required to gather requirements and design than option 1 but perhaps not as much as option 2 *
Con: new entities must be modelled and designed by a professional
Pro: new attributes might be easily added later on
Con: complex code required to validate simple data types (for the custom attributes)
Con: custom interface components still required, but generic interface components may be possible for the custom attributes
Con: SQL becomes complex as soon as any custom attribute is included in a report
Con: good performance generally, unless you start need to search by or report by the custom attributes
* I'm not sure if Option 3 would necessarily save any time in the design phase.
Personally I would lean toward option 2, and avoid EAV wherever possible. However, for some scenarios the users need the flexibility that comes with EAV; but this comes with a great cost.
It is safe to say that the EAV/CR database model is bad.
No, it's not. It's just that they're an inefficient usage of relational databases. A purely key/value store works great with this model.
Now, to your real question: How to store various attributes and keep them searchable?
Just use EAV. In your case it would be a single extra table. index it on both attribute name and value, most RDBMs would use prefix-compression to on the attribute name repetitions, making it really fast and compact.
EAV/CR gets ugly when you use it to replace 'real' fields. As with every tool, overusing it is 'bad', and gives it a bad image.
// At this point, I'd like to take a moment to speak to you about the Magento/Adobe PSD format.
// Magento/PSD is not a good ecommerce platform/format. Magento/PSD is not even a bad ecommerce platform/format. Calling it such would be an
// insult to other bad ecommerce platform/formats, such as Zencart or OsCommerce. No, Magento/PSD is an abysmal ecommerce platform/format. Having
// worked on this code for several weeks now, my hate for Magento/PSD has grown to a raging fire
// that burns with the fierce passion of a million suns.
http://code.google.com/p/xee/source/browse/trunk/XeePhotoshopLoader.m?spec=svn28&r=11#107
The internal models are wacky at best, like someone put the schema into a boggle game, sealed that and put it in a paint shacker...
Real world: I'm working on a midware fulfilment app and here are one the queries to get address information.
CREATE OR REPLACE VIEW sales_flat_addresses AS
SELECT sales_order_entity.parent_id AS order_id,
sales_order_entity.entity_id,
CONCAT(CONCAT(UCASE(MID(sales_order_entity_varchar.value,1,1)),MID(sales_order_entity_varchar.value,2)), "Address") as type,
GROUP_CONCAT(
CONCAT( eav_attribute.attribute_code," ::::: ", sales_order_entity_varchar.value )
ORDER BY sales_order_entity_varchar.value DESC
SEPARATOR '!!!!!'
) as data
FROM sales_order_entity
INNER JOIN sales_order_entity_varchar ON sales_order_entity_varchar.entity_id = sales_order_entity.entity_id
INNER JOIN eav_attribute ON eav_attribute.attribute_id = sales_order_entity_varchar.attribute_id
AND sales_order_entity.entity_type_id =12
GROUP BY sales_order_entity.entity_id
ORDER BY eav_attribute.attribute_code = 'address_type'
Exacts address information for an order, lazily
--
Summary: Only use Magento if:
You are being given large sacks of money
You must
Enjoy pain
I'm surprised nobody mentioned NoSQL databases.
I've never practiced NoSQL in a production context (just tested MongoDB and was impressed) but the whole point of NoSQL is being able to save items with varying attributes in the same "document".
Where performance is not a major requirement, as in an ETL type of application, EAV has another distinct advantage: differential saves.
I've implemented a number of applications where an over-arching requirement was the ability to see the history of a domain object from its first "version" to it's current state. If that domain object has a large number of attributes, that means each change requires a new row be inserted into it's corresponding table (not an update because the history would be lost, but an insert). Let's say this domain object is a Person, and I have 500k Persons to track with an average of 100+ changes over the Persons life-cycle to various attributes. Couple that with the fact that rare is the application that has only 1 major domain object and you'll quickly surmize that the size of the database would quickly grow out of control.
An easy solution is to save only the differential changes to the major domain objects rather than repeatedly saving redundant information.
All models change over time to reflect new business needs. Period. Using EAV is but one of the tools in our box to use; but it should never be automatically classified as "bad".
I'm struggling with the same issue. It may be interesting for you to check out the following discussion on two existing ecommerce solutions: Magento (EAV) and Joomla (regular relational structure):
https://forum.virtuemart.net/index.php?topic=58686.0
It seems, that Magento's EAV performance is a real showstopper.
That's why I'm leaning towards a normalized structure. To overcome the lack of flexibility I'm thinking about adding some separate data dictionary in the future (XML or separate DB tables) that could be edited, and based on that, application code for displaying and comparing product categories with new attributes set would be generated, together with SQL scripts.
Such architecture seems to be the sweetspot in this case - flexible and performant at the same time.
The problem could be frequent use of ALTER TABLE in live environment. I'm using Postgres, so its MVCC and transactional DDL will hopefully ease the pain.
I still vote for modeling at the lowest-meaningful atomic-level for EAV. Let standards, technologies and applications that gear toward certain user community to decide content models, repetition needs of attributes, grains, etc.
If it's just about the product catalog attributes and hence validation requirements for those attributes are rather limited, the only real downside to EAV is query performance and even that is only a problem when your query deals with multiple "things" (products) with attributes, the performance for the query "give me all attributes for the product with id 234" while not optimal is still plenty fast.
One solution is to use the SQL database / EAV model only for the admin / edit side of the product catalog and have some process that denormalizes the products into something that makes it searchable. Since you already have attributes and hence it's rather likely that you want faceting, this something could be Solr or ElasticSearch. This approach avoids basically all downsides to the EAV model and the added complexity is limited to serializing a complete product to JSON on update.
EAV has many drawbacks:
Performance degradation over time
Once the amount of data in the application grows beyond a certain size, the retrieval and manipulation of that data is likely to become less and less efficient.
The SQL queries are very complex and difficult to write.
Data Integrity problems.
You can't define foreign keys for all the fields needed.
You have to define and maintain your own metadata.
I have a slightly different problem: instead of many attributes with sparse values (which is possibly a good reason to use EAV), I want to store something more like a spreadsheet. The columns in the sheet can change, but within a sheet all cells will contain data (not sparse).
I made a small set of tests to benchmark two designs: one using EAV, and the other using a Postgres ARRAY to store cell data.
EAV
Array
Both schemas have indexes on appropriate columns, and the indexes are used by the planner.
It turned out the array-based schema was an order of magnitude faster for both inserts and queries. From quick tests, it seemed that both scaled linearly. The tests aren't very thorough, though. Suggestions and forks welcome - they're under an MIT licence.

In which direction to make the association in domain model

Is there some rule of thumb, in which direction to make the association when designing domain model?
For example, we have products in the stock. Stock status of a product is a rather complex data structure, containing enumerations of multiple variations of the product either being in the stock, being out of stock or being bookable. Thus we make a seperate object of the stock status associated with the product. Now the question is, if product object should have a reference to it's stock status, or stock status have a reference to a particular product.
First solution feels like, it's not the real concern of product knowing it's stock state. Product is just a product, and maybe we should manipulate them in different context, where stocking is not a concern. In the other hand, stock status being a root feels awkward, as when thinking about stock, first we think about a product being in the stock.
How to decide, which entity acts as a root for the association?
You are assuming that both concepts are tightly coupled, meaning, they belong to the same bounded context. This means both models become dependent on each other - which may be something you don't want because it causes complexity you may not want. After all, you mentioned it yourself: "it's not the real concern of product knowing it's stock state". So why add a relation to it?
You could consider them as two separate bounded contexts - no direct relation between them, except for the product ID which links the two concepts.
Navigability is something you should simply neglect as it is something purely artificial. If two things are related, they know about each other. Actio et reactio. Gravity. Love. Try hard to find something that works only in one direction. Blackmail. Spy mirrors.
Introducing navigability indeed has only meaning in implementation phase. You try to decouple things in order to reduce dependencies, now for good. And what you actually do here is to attach role names towards the navigation. Which in turn makes the arrows superfluous.
TL;DR; Just don't use arrows in UML modeling. Leave them for the Powerpoint League.
First solution feels like, it's not the real concern of product knowing it's stock state. Product is just a product, and maybe we should manipulate them in different context, where stocking is not a concern. In the other hand, stock status being a root feels awkward, as when thinking about stock, first we think about a product being in the stock.
When we think about shopping carts, we think about products in the shopping cart. Yet most of the time, the useful way to model cart items is with a reference back to the product.
My guess would be that you need to be thinking more about Stock, and in particular about its life cycle; how tightly coupled are the lifetimes of the two different ideas? If you have a situation where a single Product has a relation to two different Stocks (one in the past, one in the present; one at this location, another at that location), then storing that relationship in the product isn't right.

Redundant references vs. historical data

I have a domain model in which each line item is associated with a product. The product has a list of options. Each option is either required or optional. The user can include an optional option which will add it to the line item's selections list.
In order to avoid redundancy, my first thought was to exclude required options from the line item's selections list. There are a lot of required options, so including them for every line item would lead to a bloated database.
The problem is that the products can potentially change over time. Options that were once required could become optional, and visa-versa. And entirely new options may be added to the product. This creates a problem with my initial idea, since the meaning of line items' selection lists would depend on a product's options at the time of the order.
So what should I do?
If I also include required options in the line item's selection lists, then the model is simple. I'd have a snapshot of the options that were included with the product. But then I've also got a lot of bloat in the database since references to required options will be repeated for every line item. Is this something I should be worried about or will SQL Server do some kind of behind-the-scenes compression?
Should I pursue my original idea of excluding required options from the line item's selection lists? Then I would need to keep some historical data regarding changes to the products. That way I could recreate the product and its options as they existed at the time of the order. Sounds possible but more complicated than the first option. I worry it would take more CPU cycles but that would be okay if its for old orders which won't be opened very often. I've never had to do this myself before, but maybe it wouldn't be so hard. If this is the approach you recommend, please provide some pointers to design patterns, etc. to help me get started.
I'd go with the first option if there's any chance that your list of required options will change in the future. If you don't store those options with each line item in the database, then you have to keep track of which options were required on which dates, and join them separately. This will needlessly complicate your join logic.
As for bloating your database, I don't think this will be as bad as you might think. It sounds like you probably already have join tables for ProductOptions and LineItemOptions that just contains product keys and option keys. This latter table should be the only one that ends up having more records based on your first design choice. Since it only contains keys, its records are not going to take up a lot more memory, and joining on it will be really fast anyway.

What does the `ordered` flag do in a to-many relationship?

While looking for ways to add an ordered to-many relationship to my Core Data model, with the least possible amount of changes to the model, I noticed an option of the to-many relationship that says ordered (see screenshot below). Wow, sounds great, but what does it do?
My SQLite store is not complaining when I check or uncheck it, and my app still compiles and runs fine too. I was thinking maybe the lightweight migration takes care of the change, but from the looks of it, all my custom NSManagedObject subclasses work without the need for modification too, so what's going on?
To summarize the questions:
Should that ordered flag change the to-many relationship's data type from NSSet to NSArray?
Or is it just that the order in which the set is modified, will persist on sequential reads and writes?
Or am I wrong with my assumptions and is it something else entirely?
Is there an Apple doc page where this feature is described?
Many thanks!
Ordered relationships allow you to assign an arbitrary ordering to related objects. You can think of this as ordering colors from your most to least favorite, rather than sorting by date, title, etc.
Before this feature was added ordering was implemented by creating a position attribute, then manually updating the position indexes for items whenever the user reordered them. If you have a large number of items, using the built in ordering can be more expensive than implementing this manually, as described above.

Entity Attribute Value Database vs. strict Relational Model Ecommerce

It is safe to say that the EAV/CR database model is bad. That said,
Question: What database model, technique, or pattern should be used to deal with "classes" of attributes describing e-commerce products which can be changed at run time?
In a good E-commerce database, you will store classes of options (like TV resolution then have a resolution for each TV, but the next product may not be a TV and not have "TV resolution"). How do you store them, search efficiently, and allow your users to setup product types with variable fields describing their products? If the search engine finds that customers typically search for TVs based on console depth, you could add console depth to your fields, then add a single depth for each tv product type at run time.
There is a nice common feature among good e-commerce apps where they show a set of products, then have "drill down" side menus where you can see "TV Resolution" as a header, and the top five most common TV Resolutions for the found set. You click one and it only shows TVs of that resolution, allowing you to further drill down by selecting other categories on the side menu. These options would be the dynamic product attributes added at run time.
Further discussion:
So long story short, are there any links out on the Internet or model descriptions that could "academically" fix the following setup? I thank Noel Kennedy for suggesting a category table, but the need may be greater than that. I describe it a different way below, trying to highlight the significance. I may need a viewpoint correction to solve the problem, or I may need to go deeper in to the EAV/CR.
Love the positive response to the EAV/CR model. My fellow developers all say what Jeffrey Kemp touched on below: "new entities must be modeled and designed by a professional" (taken out of context, read his response below). The problem is:
entities add and remove attributes weekly (search keywords dictate future attributes)
new entities arrive weekly (products are assembled from parts)
old entities go away weekly (archived, less popular, seasonal)
The customer wants to add attributes to the products for two reasons:
department / keyword search / comparison chart between like products
consumer product configuration before checkout
The attributes must have significance, not just a keyword search. If they want to compare all cakes that have a "whipped cream frosting", they can click cakes, click birthday theme, click whipped cream frosting, then check all cakes that are interesting knowing they all have whipped cream frosting. This is not specific to cakes, just an example.
There's a few general pros and cons I can think of, there are situations where one is better than the other:
Option 1, EAV Model:
Pro: less time to design and develop a simple application
Pro: new entities easy to add (might even
be added by users?)
Pro: "generic" interface components
Con: complex code required to validate simple data types
Con: much more complex SQL for simple
reports
Con: complex reports can become almost
impossible
Con: poor performance for large data sets
Option 2, Modelling each entity separately:
Con: more time required to gather
requirements and design
Con: new entities must be modelled and
designed by a professional
Con: custom interface components for each
entity
Pro: data type constraints and validation simple to implement
Pro: SQL is easy to write, easy to
understand and debug
Pro: even the most complex reports are relatively simple
Pro: best performance for large data sets
Option 3, Combination (model entities "properly", but add "extensions" for custom attributes for some/all entities)
Pro/Con: more time required to gather requirements and design than option 1 but perhaps not as much as option 2 *
Con: new entities must be modelled and designed by a professional
Pro: new attributes might be easily added later on
Con: complex code required to validate simple data types (for the custom attributes)
Con: custom interface components still required, but generic interface components may be possible for the custom attributes
Con: SQL becomes complex as soon as any custom attribute is included in a report
Con: good performance generally, unless you start need to search by or report by the custom attributes
* I'm not sure if Option 3 would necessarily save any time in the design phase.
Personally I would lean toward option 2, and avoid EAV wherever possible. However, for some scenarios the users need the flexibility that comes with EAV; but this comes with a great cost.
It is safe to say that the EAV/CR database model is bad.
No, it's not. It's just that they're an inefficient usage of relational databases. A purely key/value store works great with this model.
Now, to your real question: How to store various attributes and keep them searchable?
Just use EAV. In your case it would be a single extra table. index it on both attribute name and value, most RDBMs would use prefix-compression to on the attribute name repetitions, making it really fast and compact.
EAV/CR gets ugly when you use it to replace 'real' fields. As with every tool, overusing it is 'bad', and gives it a bad image.
// At this point, I'd like to take a moment to speak to you about the Magento/Adobe PSD format.
// Magento/PSD is not a good ecommerce platform/format. Magento/PSD is not even a bad ecommerce platform/format. Calling it such would be an
// insult to other bad ecommerce platform/formats, such as Zencart or OsCommerce. No, Magento/PSD is an abysmal ecommerce platform/format. Having
// worked on this code for several weeks now, my hate for Magento/PSD has grown to a raging fire
// that burns with the fierce passion of a million suns.
http://code.google.com/p/xee/source/browse/trunk/XeePhotoshopLoader.m?spec=svn28&r=11#107
The internal models are wacky at best, like someone put the schema into a boggle game, sealed that and put it in a paint shacker...
Real world: I'm working on a midware fulfilment app and here are one the queries to get address information.
CREATE OR REPLACE VIEW sales_flat_addresses AS
SELECT sales_order_entity.parent_id AS order_id,
sales_order_entity.entity_id,
CONCAT(CONCAT(UCASE(MID(sales_order_entity_varchar.value,1,1)),MID(sales_order_entity_varchar.value,2)), "Address") as type,
GROUP_CONCAT(
CONCAT( eav_attribute.attribute_code," ::::: ", sales_order_entity_varchar.value )
ORDER BY sales_order_entity_varchar.value DESC
SEPARATOR '!!!!!'
) as data
FROM sales_order_entity
INNER JOIN sales_order_entity_varchar ON sales_order_entity_varchar.entity_id = sales_order_entity.entity_id
INNER JOIN eav_attribute ON eav_attribute.attribute_id = sales_order_entity_varchar.attribute_id
AND sales_order_entity.entity_type_id =12
GROUP BY sales_order_entity.entity_id
ORDER BY eav_attribute.attribute_code = 'address_type'
Exacts address information for an order, lazily
--
Summary: Only use Magento if:
You are being given large sacks of money
You must
Enjoy pain
I'm surprised nobody mentioned NoSQL databases.
I've never practiced NoSQL in a production context (just tested MongoDB and was impressed) but the whole point of NoSQL is being able to save items with varying attributes in the same "document".
Where performance is not a major requirement, as in an ETL type of application, EAV has another distinct advantage: differential saves.
I've implemented a number of applications where an over-arching requirement was the ability to see the history of a domain object from its first "version" to it's current state. If that domain object has a large number of attributes, that means each change requires a new row be inserted into it's corresponding table (not an update because the history would be lost, but an insert). Let's say this domain object is a Person, and I have 500k Persons to track with an average of 100+ changes over the Persons life-cycle to various attributes. Couple that with the fact that rare is the application that has only 1 major domain object and you'll quickly surmize that the size of the database would quickly grow out of control.
An easy solution is to save only the differential changes to the major domain objects rather than repeatedly saving redundant information.
All models change over time to reflect new business needs. Period. Using EAV is but one of the tools in our box to use; but it should never be automatically classified as "bad".
I'm struggling with the same issue. It may be interesting for you to check out the following discussion on two existing ecommerce solutions: Magento (EAV) and Joomla (regular relational structure):
https://forum.virtuemart.net/index.php?topic=58686.0
It seems, that Magento's EAV performance is a real showstopper.
That's why I'm leaning towards a normalized structure. To overcome the lack of flexibility I'm thinking about adding some separate data dictionary in the future (XML or separate DB tables) that could be edited, and based on that, application code for displaying and comparing product categories with new attributes set would be generated, together with SQL scripts.
Such architecture seems to be the sweetspot in this case - flexible and performant at the same time.
The problem could be frequent use of ALTER TABLE in live environment. I'm using Postgres, so its MVCC and transactional DDL will hopefully ease the pain.
I still vote for modeling at the lowest-meaningful atomic-level for EAV. Let standards, technologies and applications that gear toward certain user community to decide content models, repetition needs of attributes, grains, etc.
If it's just about the product catalog attributes and hence validation requirements for those attributes are rather limited, the only real downside to EAV is query performance and even that is only a problem when your query deals with multiple "things" (products) with attributes, the performance for the query "give me all attributes for the product with id 234" while not optimal is still plenty fast.
One solution is to use the SQL database / EAV model only for the admin / edit side of the product catalog and have some process that denormalizes the products into something that makes it searchable. Since you already have attributes and hence it's rather likely that you want faceting, this something could be Solr or ElasticSearch. This approach avoids basically all downsides to the EAV model and the added complexity is limited to serializing a complete product to JSON on update.
EAV has many drawbacks:
Performance degradation over time
Once the amount of data in the application grows beyond a certain size, the retrieval and manipulation of that data is likely to become less and less efficient.
The SQL queries are very complex and difficult to write.
Data Integrity problems.
You can't define foreign keys for all the fields needed.
You have to define and maintain your own metadata.
I have a slightly different problem: instead of many attributes with sparse values (which is possibly a good reason to use EAV), I want to store something more like a spreadsheet. The columns in the sheet can change, but within a sheet all cells will contain data (not sparse).
I made a small set of tests to benchmark two designs: one using EAV, and the other using a Postgres ARRAY to store cell data.
EAV
Array
Both schemas have indexes on appropriate columns, and the indexes are used by the planner.
It turned out the array-based schema was an order of magnitude faster for both inserts and queries. From quick tests, it seemed that both scaled linearly. The tests aren't very thorough, though. Suggestions and forks welcome - they're under an MIT licence.