While running the code through FindBugs to pick up smelly bits I am getting
Bug: Class com.MyClass defines non-transient non-serializable instance field someSet
Pattern id: SE_BAD_FIELD, type: Se, category: BAD_PRACTICE
I know set does not implement serialization but HashSet does and thats why it is being initialized then and there .I thought this was the good practice :( but apparently not
public class Myclass extends
{
#Transient
private Set<String> someSet = new HashSet<String>();
...........
}
Any help would be great . Low level warning but would love to know why ?
Unfortunately, FindBugs isn't smart enough to recognize that the field that is defined as Set is actually a HashSet. It's a shortcoming of findbugs. You should add an issue here http://sourceforge.net/tracker/?group_id=96405&atid=614693
Related
I have a #PlanningSolution class, that has one field with a custom List implementation as type.
When solving I run into the following issue (as described in the optaplanner documentation):
java.lang.IllegalStateException: The cloneCollectionClass (class java.util.ArrayList) created for originalCollectionClass (class Solution$1) is not assignable to the field's type (class CustomListImpl).
Maybe consider replacing the default SolutionCloner.
As this field has no impact on planning, can I prevent FieldAccessingSolutionCloner from trying to clone that particular field e.g. by adding some annotation? I dont want to provide a complete custom SolutionCloner.
When inspecting the sources of FieldAccessingSolutionCloner I found out that I only needed to override the method retrieveCachedFields(...) or constructCloneCollection(...) so I tried to extend FieldAccessingSolutionCloner but then I need a public no-args-constructor. There I dont know how to initialise the field solutionDescriptor in the no-args-constructor to use my ExtendedFieldAccessingSolutionCloner as solution cloner.
If the generic solution cloner decided to clone that List, there is probably a good reason for it do so: one of the the elements in that list probably has a reference to a planning entity or the planning solution - and therefore the entire list needs to be planning cloned.
If that's not the case, this is a bug in OptaPlanner. Please provide the classes source code of the class with that field and the CustomListImpl class too, so we can reproduce and fix it.
To supply a custom SolutionCloner, follow the docs which will show something like this (but this is a simple case without chained variables, so it's easy to get right, but solution cloning is notoriously difficult!).
#PlanningSolution(solutionCloner = VaccinationSolutionCloner.class)
public class VaccinationSolution {...}
public class VaccinationSolutionCloner implements SolutionCloner<VaccinationSolution> {
#Override
public VaccinationSolution cloneSolution(VaccinationSolution solution) {
List<PersonAssignment> personAssignmentList = solution.getPersonAssignmentList();
List<PersonAssignment> clonedPersonAssignmentList = new ArrayList<>(personAssignmentList.size());
for (PersonAssignment personAssignment : personAssignmentList) {
PersonAssignment clonedPersonAssignment = new PersonAssignment(personAssignment);
clonedPersonAssignmentList.add(clonedPersonAssignment);
}
return new VaccinationSolution(solution.getVaccineTypeList(), solution.getVaccinationCenterList(), solution.getAppointmentList(),
solution.getVaccinationSlotList(), clonedPersonAssignmentList, solution.getScore());
}
}
I'm looking for documentation on how Jackson works with private constructors on immutable types. Using Jackson 2.9.6 and the default object mapper provided by spring boot two running with jdk-10.0.1
Given JSON:
{"a":"test"}
and given a class like:
public class ExampleValue {
private final String a;
private ExampleValue() {
this.a = null;
}
public String getA() {
return this.a;
}
}
Deserialisation (surprisingly, at least to me) seems to work.
Whereas this does not:
public class ExampleValue {
private final String a;
private ExampleValue(final String a) {
this.a = a;
}
public String getA() {
return this.a;
}
}
And this does:
public class ExampleValue {
private final String a;
#java.beans.ConstructorProperties({"a"})
private ExampleValue(final String a) {
this.a = a;
}
public String getA() {
return this.a;
}
}
My assumption is that the only way the first example can work is by using reflection to set the value of the final field (which I presume it does by java.lang.reflect.AccessibleObject.setAccessible(true).
Question 1: am I right that this is how Jackson works in this case? I presume this would have the potential to fail under a security manager which does not allow this operation?
My personal preference, therefore, would be the last code example above, since it involves less "magic" and works under a security manager. However, I have been slightly confused by various threads I've found about Lombok and constructor generation which used to generate by default #java.beans.ConstructorProperties(...) but then changed default to no longer do this and now allows one to configure it optionally using lombok.anyConstructor.addConstructorProperties=true
Some people (including in the lombok release notes for v1.16.20) suggest that:
Oracle more or less broke this annotation with the release of JDK9, necessitating this breaking change.
but I'm not precisely clear on what is meant by this, what did Oracle break? For me using JDK 10 with jackson 2.9.6 it seems to work ok.
Question 2: Is any one able to shed any light on how this annotation was broken in JDK 9 and why lombok now considers it undesirable to generate this annotation by default anymore.
Answer 1: This is exactly how it works (also to my surprise). According to the Jackson documentation on Mapper Features, the properties INFER_PROPERTY_MUTATORS, ALLOW_FINAL_FIELDS_AS_MUTATORS, and CAN_OVERRIDE_ACCESS_MODIFIERS all default to true. Therefore, in your first example, Jackson
creates an instance using the private constructor with the help of AccessibleObject#setAccessible (CAN_OVERRIDE_ACCESS_MODIFIERS),
detects a fully-accessable getter method for a (private) field, and considers the field as mutable property (INFER_PROPERTY_MUTATORS),
ignores the final on the field due to ALLOW_FINAL_FIELDS_AS_MUTATORS, and
gains access to that field using AccessibleObject#setAccessible (CAN_OVERRIDE_ACCESS_MODIFIERS).
However, I agree that one should not rely on that, because as you said a security manager could prohibit it, or Jackson's defaults may change. Furthermore, it feels "not right" to me, as I would expect that class to be immutable and the field to be unsettable.
Example 2 does not work because Jackson does not find a usable constructor (because it cannot map the field names to the parameter names of the only existing constructor, as these names are not present at runtime). #java.beans.ConstructorProperties in your third example bypasses this problem, as Jackson explicitly looks for that annotation at runtime.
Answer 2:
My interpretation is that #java.beans.ConstructorProperties is not really broken, but just cannot be assumed to be present any more with Java 9+. This is due to its membership in the java.desktop module (see, e.g., this thread for a discussion on this topic). As modularized Java applications may have a module path without this module, lombok would break such applications if it would generate this annotation by default. (Furthermore, this annotation is not available in general on the Android SDK.)
So if you have a non-modularized application or a modularized application with java.desktop on the module path, it's perfectly fine to let lombok generate the annotation by setting lombok.anyConstructor.addConstructorProperties=true, or to add the annotation manually if you are not using lombok.
I'm a beginner in Kotlin and recently read about Sealed Classes. But from the doc the only think I actually get is that they are exist.
The doc stated, that they are "representing restricted class hierarchies". Besides that I found a statement that they are enums with superpower. Both aspects are actually not clear.
So can you help me with the following questions:
What are sealed classes and what is the idiomatic way of using ones?
Does such a concept present in other languages like Python, Groovy or C#?
UPDATE:
I carefully checked this blog post and still can't wrap my head around that concept. As stated in the post
Benefit
The feature allows us to define class hierarchies that are
restricted in their types, i.e. subclasses. Since all subclasses need
to be defined inside the file of the sealed class, there’s no chance
of unknown subclasses which the compiler doesn’t know about.
Why the compiler doesn't know about other subclasses defined in other files? Even IDE knows that. Just press Ctrl+Alt+B in IDEA on, for instance, List<> definition and all implementations will be shown even in other source files. If a subclass can be defined in some third-party framework, which not used in the application, why should we care about that?
Say you have a domain (your pets) where you know there is a definite enumeration (count) of types. For example, you have two and only two pets (which you will model with a class called MyPet). Meowsi is your cat and Fido is your dog.
Compare the following two implementations of that contrived example:
sealed class MyPet
class Meowsi : MyPet()
class Fido : MyPet()
Because you have used sealed classes, when you need to perform an action depending on the type of pet, then the possibilities of MyPet are exhausted in two and you can ascertain that the MyPet instance will be exactly one of the two options:
fun feed(myPet: MyPet): String {
return when(myPet) {
is Meowsi -> "Giving cat food to Meowsi!"
is Fido -> "Giving dog biscuit to Fido!"
}
}
If you don't use sealed classes, the possibilities are not exhausted in two and you need to include an else statement:
open class MyPet
class Meowsi : MyPet()
class Fido : MyPet()
fun feed(myPet: MyPet): String {
return when(myPet) {
is Mewosi -> "Giving cat food to Meowsi!"
is Fido -> "Giving dog biscuit to Fido!"
else -> "Giving food to someone else!" //else statement required or compiler error here
}
}
In other words, without sealed classes there is not exhaustion (complete coverage) of possibility.
Note that you could achieve exhaustion of possiblity with Java enum however these are not fully-fledged classes. For example, enum cannot be subclasses of another class, only implement an interface (thanks EpicPandaForce).
What is the use case for complete exhaustion of possibilities? To give an analogy, imagine you are on a tight budget and your feed is very precious and you want to ensure you don't end up feeding extra pets that are not part of your household.
Without the sealed class, someone else in your home/application could define a new MyPet:
class TweetiePie : MyPet() //a bird
And this unwanted pet would be fed by your feed method as it is included in the else statement:
else -> "Giving food to someone else!" //feeds any other subclass of MyPet including TweetiePie!
Likewise, in your program exhaustion of possibility is desirable because it reduces the number of states your application can be in and reduces the possibility of bugs occurring where you have a possible state where behaviour is poorly defined.
Hence the need for sealed classes.
Mandatory else
Note that you only get the mandatory else statement if when is used as an expression. As per the docs:
If [when] is used as an expression, the value of the satisfied branch becomes the value of the overall expression [... and] the else branch is mandatory, unless the compiler can prove that all possible cases are covered with branch conditions
This means you won't get the benefit of sealed classes for something like this):
fun feed(myPet: MyPet): Unit {
when(myPet) {
is Meowsi -> println("Giving cat food to Meowsi!") // not an expression so we can forget about Fido
}
}
To get exhaustion for this scenario, you would need to turn the statement into an expression with return type.
Some have suggested an extension function like this would help:
val <T> T.exhaustive: T
get() = this
Then you can do:
fun feed(myPet: MyPet): Unit {
when(myPet) {
is Meowsi -> println("Giving cat food to Meowsi!")
}.exhaustive // compiler error because we forgot about Fido
}
Others have suggested that an extension function pollutes the namespace and other workarounds (like compiler plugins) are required.
See here for more about this problem.
Sealed classes are easier to understand when you understand the kinds of problems they aim to solve. First I'll explain the problems, then I'll introduce the class hierarchies and the restricted class hierarchies step by step.
We'll take a simple example of an online delivery service where we use three possible states Preparing, Dispatched and Delivered to display the current status of an online order.
Problems
Tagged class
Here we use a single class for all the states. Enums are used as type markers. They are used for tagging the states Preparing, Dispatched and Delivered :
class DeliveryStatus(
val type: Type,
val trackingId: String? = null,
val receiversName: String? = null) {
enum class Type { PREPARING, DISPATCHED, DELIVERED }
}
The following function checks the state of the currently passed object with the help of enums and displays the respective status:
fun displayStatus(state: DeliveryStatus) = when (state.type) {
PREPARING -> print("Preparing for dispatch")
DISPATCHED -> print("Dispatched. Tracking ID: ${state.trackingId ?: "unavailable"}")
DELIVERED -> print("Delivered. Receiver's name: ${state.receiversName ?: "unavailable"}")
}
As you can see, we are able to display the different states properly. We also get to use exhaustive when expression, thanks to enums. But there are various problems with this pattern:
Multiple responsibilities
The class DeliveryStatus has multiple responsibilities of representing different states. So it can grow bigger, if we add more functions and properties for different states.
More properties than needed
An object has more properties than it actually needs in a particular state. For example, in the function above, we don't need any property for representing the Preparing state. The trackingId property is used only for the Dispatched state and the receiversName property is concerned only with the Delivered state. The same is true for functions. I haven't shown functions associated with states to keep the example small.
No guarantee of consistency
Since these unused properties can be set from unrelated states, it's hard to guarantee the consistency of a particular state. For example, one can set the receiversName property on the Preparing state. In that case, the Preparing will be an illegal state, because we can't have a receiver's name for the shipment that hasn't been delivered yet.
Need to handle null values
Since not all properties are used for all states, we have to keep the properties nullable. This means we also need to check for the nullability. In the displayStatus() function we check the nullability using the ?:(elvis) operator and show unavailable, if that property is null. This complicates our code and reduces readability. Also, due to the possibility of a nullable value, the guarantee for consistency is reduced further, because the null value of receiversName in Delivered is an illegal state.
Introducing Class Hierarchies
Unrestricted class hierarchy: abstract class
Instead of managing all the states in a single class, we separate the states in different classes. We create a class hierarchy from an abstract class so that we can use polymorphism in our displayStatus() function:
abstract class DeliveryStatus
object Preparing : DeliveryStatus()
class Dispatched(val trackingId: String) : DeliveryStatus()
class Delivered(val receiversName: String) : DeliveryStatus()
The trackingId is now only associated with the Dispatched state and receiversName is only associated with the Delivered state. This solves the problems of multiple responsibilities, unused properties, lack of state consistency and null values.
Our displayStatus() function now looks like the following:
fun displayStatus(state: DeliveryStatus) = when (state) {
is Preparing -> print("Preparing for dispatch")
is Dispatched -> print("Dispatched. Tracking ID: ${state.trackingId}")
is Delivered -> print("Delivered. Received by ${state.receiversName}")
else -> throw IllegalStateException("Unexpected state passed to the function.")
}
Since we got rid of null values, we can be sure that our properties will always have some values. So now we don't need to check for null values using the ?:(elvis) operator. This improves code readability.
So we solved all the problems mentioned in the tagged class section by introducing a class hierarchy. But the unrestricted class hierarchies have the following shortcomings:
Unrestricted Polymorphism
By unrestricted polymorphism I mean that our function displayStatus() can be passed a value of unlimited number of subclasses of the DeliveryStatus. This means we have to take care of the unexpected states in displayStatus(). For this, we throw an exception.
Need for the else branch
Due to unrestricted polymorphism, we need an else branch to decide what to do when an unexpected state is passed. If we use some default state instead of throwing an exception and then forget to take care of any newly added subclass, then that default state will be displayed instead of the state of the newly created subclass.
No exhaustive when expression
Since the subclasses of an abstract class can exist in different packages and compilation units, the compiler doesn't know all the possible subclasses of the abstract class. So it won't flag an error at compile time, if we forget to take care of any newly created subclasses in the when expression. In that case, only throwing an exception can help us. Unfortunately, we'll know about the newly created state only after the program crashes at runtime.
Sealed Classes to the Rescue
Restricted class hierarchy: sealed class
Using the sealed modifier on a class does two things:
It makes that class an abstract class. Since Kotlin 1.5, you can use a sealed interface too.
It makes it impossible to extend that class outside of that file. Since Kotlin 1.5 the same file restriction has been removed. Now the class can be extended in other files too but they need to be in the same compilation unit and in the same package as the sealed type.
sealed class DeliveryStatus
object Preparing : DeliveryStatus()
class Dispatched(val trackingId: String) : DeliveryStatus()
class Delivered(val receiversName: String) : DeliveryStatus()
Our displayStatus() function now looks cleaner:
fun displayStatus(state: DeliveryStatus) = when (state) {
is Preparing -> print("Preparing for Dispatch")
is Dispatched -> print("Dispatched. Tracking ID: ${state.trackingId}")
is Delivered -> print("Delivered. Received by ${state.receiversName}")
}
Sealed classes offer the following advantages:
Restricted Polymorphism
By passing an object of a sealed class to a function, you are also sealing that function, in a sense. For example, now our displayStatus() function is sealed to the limited forms of the state object, that is, it will either take Preparing, Dispatched or Delivered. Earlier it was able to take any subclass of DeliveryStatus. The sealed modifier has put a limit on polymorphism. As a result, we don't need to throw an exception from the displayStatus() function.
No need for the else branch
Due to restricted polymorphism, we don't need to worry about other possible subclasses of DeliveryStatus and throw an exception when our function receives an unexpected type. As a result, we don't need an else branch in the when expression.
Exhaustive when expression
Just like all the possible values of an enum class are contained inside the same class, all the possible subtypes of a sealed class are contained inside the same package and the same compilation unit. So, the compiler knows all the possible subclasses of this sealed class. This helps the compiler to make sure that we have covered(exhausted) all the possible subtypes in the when expression. And when we add a new subclass and forget to cover it in the when expression, it flags an error at compile time.
Note that in the latest Kotlin versions, your when is exhaustive for the when expressions as well the when statements.
Why in the same file?
The same file restriction has been removed since Kotlin 1.5. Now you can define the subclasses of the sealed class in different files but the files need to be in the same package and the same compilation unit. Before 1.5, the reason that all the subclasses of a sealed class needed to be in the same file was that it had to be compiled together with all of its subclasses for it to have a closed set of types. If the subclasses were allowed in other files, the build tools like Gradle would have to keep track of the relations of files and this would affect the performance of incremental compilation.
IDE feature: Add remaining branches
When you just type when (status) { } and press Alt + Enter, Enter, the IDE automatically generates all the possible branches for you like the following:
when (state) {
is Preparing -> TODO()
is Dispatched -> TODO()
is Delivered -> TODO()
}
In our small example there are just three branches but in a real project you could have hundreds of branches. So you save the effort of manually looking up which subclasses you have defined in different files and writing them in the when expression one by one in another file. Just use this IDE feature. Only the sealed modifier enables this.
That's it! Hope this helps you understand the essence of sealed classes.
If you've ever used an enum with an abstract method just so that you could do something like this:
public enum ResultTypes implements ResultServiceHolder {
RESULT_TYPE_ONE {
#Override
public ResultOneService getService() {
return serviceInitializer.getResultOneService();
}
},
RESULT_TYPE_TWO {
#Override
public ResultTwoService getService() {
return serviceInitializer.getResultTwoService();
}
},
RESULT_TYPE_THREE {
#Override
public ResultThreeService getService() {
return serviceInitializer.getResultThreeService();
}
};
When in reality what you wanted is this:
val service = when(resultType) {
RESULT_TYPE_ONE -> resultOneService,
RESULT_TYPE_TWO -> resultTwoService,
RESULT_TYPE_THREE -> resultThreeService
}
And you only made it an enum abstract method to receive compile time guarantee that you always handle this assignment in case a new enum type is added; then you'll love sealed classes because sealed classes used in assignments like that when statement receive a "when should be exhaustive" compilation error which forces you to handle all cases instead of accidentally only some of them.
So now you cannot end up with something like:
switch(...) {
case ...:
...
default:
throw new IllegalArgumentException("Unknown type: " + enum.name());
}
Also, enums cannot extend classes, only interfaces; while sealed classes can inherit fields from a base class. You can also create multiple instances of them (and you can technically use object if you need the subclass of the sealed class to be a singleton).
I was going through Kotlin reference document and then I saw this.
The class declaration consists of the class name, the class header
(specifying its type parameters, the primary constructor etc.) and the
class body, surrounded by curly braces. Both the header and the body
are optional; if the class has no body, curly braces can be omitted.
class Empty
Now I'm wondering what is the use of such class declaration without header and body
Empty classes can be useful to represent state along with other classes, especially when part of a sealed class. Eg.
sealed class MyState {
class Empty : MyState()
class Loading : MyState()
data class Content(content: String) : MyState()
data class Error(error: Throwable) : MyState()
}
In this way you can think of them like java enum entries with more flexibility.
tldr: they want to demonstrate it's possible
even an empty class is of type Any and therefore has certain methods automatically. I think in most cases, this does not make sense, but in the documentation case it's used to show the simplest possible definition of a class.
The Java equivalent would be:
public final class Empty {
}
From practical programmer day to day perspective empty class makes no much sense indeed. There are however cases where this behavior is desirable.
There are scenarios where we want to make sure that we want to define a class and at the same time, we want to make sure that instance of this class will never be created (type created from such class is called empty type or uninhabited type).
Perfect example of this is Kotlin Nothing class with do not have class declaration header and body (notice that it also have private constructor)
https://github.com/JetBrains/kotlin/blob/master/core/builtins/native/kotlin/Nothing.kt
There are few usages for Nothing in Kotlin language. One of them would be a function that does not return a value (do not confuse this with Unit where the function returns actually returns a value of type Unit). A typical example is an assertFail method used for testing or method that exits current process. Both methods will never actually return any value yet we need to explicitly say tell it to a compiler using special type (Nothing).
fun assertFail():Nothing {
throw Exception()
}
Nothing can be also used with start projections where type Function<*, String> can be in-projected to Function<in Nothing, String>
Another usage for empty class is type token or placeholder:
class DatabaseColumnName
class DatabaseTableName
addItem(DatabaseColumnName.javaClass, "Age")
addItem(DatabaseTableName.javaClass, "Person")
...
getItemsByType(DatabaseTableName.javaClass)
Some languages are using empty classes for metaprogramming although I haven't explored this part personally:
Advantages of an empty class in C++
An example of empty class usage from Spring Boot framework:
#SpringBootApplication
class FooApplication
fun main(args: Array<String>) {
runApplication<FooApplication>(*args)
}
It doesn't make much sense as a final result. However it can be useful in active development and at a design time as a placeholder of some sort, which may be expanded in the future. Such terse syntax allows you to quickly define such new types as needed. Something like:
class Person (
val FirstName: String,
val LastName: String,
// TODO
val Address: Address
)
class Address
I think main reason this is specifically mentioned in documentation is to demonstrate, that language syntax in general can be terse, not that it is specifically created for common usage.
Sealed classes, in a sense, an extension of enum classes: the set of values for an enum type is also restricted, but each enum constant exists only as a single instance, whereas a subclass of a sealed class can have multiple instances which can contain state.
reference
In my Google Web Toolkit project, I got the following error:
com.google.gwt.user.client.rpc.SerializationException: Type ‘your.class.Type’ was not included in the set of types which can be serialized by this SerializationPolicy or its Class object could not be loaded. For security purposes, this type will not be serialized.
What are the possible causes of this error?
GWT keeps track of a set of types which can be serialized and sent to the client. your.class.Type apparently was not on this list. Lists like this are stored in .gwt.rpc files. These lists are generated, so editing these lists is probably useless. How these lists are generated is a bit unclear, but you can try the following things:
Make sure your.class.Type implements java.io.Serializable
Make sure your.class.Type has a public no-args constructor
Make sure the members of your.class.Type do the same
Check if your program does not contain collections of a non-serializable type, e.g. ArrayList<Object>. If such a collection contains your.class.Type and is serialized, this error will occur.
Make your.class.Type implement IsSerializable. This marker interface was specifically meant for classes that should be sent to the client. This didn't work for me, but my class also implemented Serializable, so maybe both interfaces don't work well together.
Another option is to create a dummy class with your.class.Type as a member, and add a method to your RPC interface that gets and returns the dummy. This forces the GWT compiler to add the dummy class and its members to the serialization whitelist.
I'll also add that if you want to use a nested class, use a static member class.
I.e.,
public class Pojo {
public static class Insider {
}
}
Nonstatic member classes get the SerializationException in GWT 2.4
I had the same issue in a RemoteService like this
public List<X> getX(...);
where X is an interface. The only implementation did conform to the rules, i.e. implements Serializable or IsSerializable, has a default constructor, and all its (non-transient and non-final) fields follow those rules as well.
But I kept getting that SerializationException until I changed the result type from List to X[], so
public X[] getX(...);
worked. Interestingly, the only argument being a List, Y being an interface, was no problem at all...
I have run into this problem, and if you per chance are using JPA or Hibernate, this can be a result of trying to return the query object and not creating a new object and copying your relavant fields into that new object. Check the following out, which I saw in a google group.
#SuppressWarnings("unchecked")
public static List<Article> getForUser(User user)
{
List<Article> articles = null;
PersistenceManager pm = PMF.get().getPersistenceManager();
try
{
Query query = pm.newQuery(Article.class);
query.setFilter("email == emailParam");
query.setOrdering("timeStamp desc");
query.declareParameters("String emailParam");
List<Article> results = (List<Article>) query.execute(user.getEmail
());
articles = new ArrayList<Article>();
for (Article a : results)
{
a.getEmail();
articles.add(a);
}
}
finally
{
pm.close();
}
return articles;
}
this helped me out a lot, hopefully it points others in the right direction.
Looks like this question is very similar to what IsSerializable or not in GWT?, see more links to related documentation there.
When your class has JDO annotations, then this fixed it for me (in addition to the points in bspoel's answer) : https://stackoverflow.com/a/4826778/1099376