Super in initializing objects [duplicate] - objective-c

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
why does initializing subclasses require calling the super class's same init function?
I really can't understand the role of super in initializing an object.
For example, having this (example — not written by me) code:
#implementation MyObject
- (id) init
{
if([super init]){
return self;
} else {
return nil;
}
}
#end
What [super init] actually does? I'm confused, can't get the point

It is necessary to ensure correct initialisation of inherited instance variables from the super class of MyObject.

Since Objective-C is object oriented you can inherit from other classes. When you inherit from other classes you can intercept messages and get to decide if you pass them on to the class you inherit from. In the case of init it is almost always important to do self = [super init] or use the designated init method of the class to make sure the object is created correctly. Imagine if in MyObject in your init method you create an NSMutableArray that your class uses but init was never called because someone else inherited from your class and never called [super init]. You would then have nil references or either a bad pointer every where you attempted to used your NSMutableArray. The reason why it is important to set self equal to [super init] is the value of self may change such as in error recovery.
//this is valid
-(id)init
{
if((self = [super init]))
{
if(someInitializationFails)
{
[self release];
self = nil;
}
}
return self;
}

Wil Shipley recommends this (from 2009):
- (id)init;
{
if (!(self = [super init]))
return nil;
// other stuff
return self;
}
But why assign super init's return to self?
Matt Gallagher's article attempts to explain it...
-- Quote:
If you remember back at the start, I
said that the initWithString: part of
a typical [[MyClass alloc]
initWithString:#"someString"]
invocation is converted into an
objc_msgSend call:
MyClass *myObject2 = objc_msgSend(myObject1, initSelector, #"someString");
So by the time we get
to the inside of the method, self
already has a value; its value is
myObject1 (i.e. the allocated object,
as returned from the [MyClass alloc]
call. This is essential because
without it, the super invocation
wouldn't be possible — the self value
is used by the compiler to send the
invocation:
[super init];
becomes:
objc_msgSendSuper(self, #selector(init));
Yes, self already
has a value when your initializer
starts. In fact, it is almost
guaranteed to be the correct, final
value.
-- Unquote
Essentially, I think a lot of people are left confused as to what each init method's 'self' is pointing to exactly, up through the superclass chain.
The answer to this riddle is implied in Apple's Objective-C Programming Language doc, under the section titled Designated Initializers:
Note that B version of init sends a
message to self to invoke the
initWithName: method. Therefore, when
the receiver is an instance of the B
class, it invokes the B version of
initWithName:, and when the receiver
is an instance of the C class, it
invokes the C version.
Or, in other words, the 'self' variable points to the our instance that is being initialized. Again to reemphasize, all of these init methods up through the superclass chain are inherited by our instance, and as such, the 'self' variable in them points to our instance (unless explicitly changed) .
Am I right? Of course!

Related

Return object of [super Init]

Well...I have read and have done a lot of research on the expression of [super init] in class inheritance of objective-c. Even some of the questions have been well explained and answered on stackoverflow. However, I still don't really understand how inheritance or the [super init] works.
In other languages, the superclass knows nothing about the subclass. There is no way for the superclass to return an object of the subclass because the superclass has no knowledge of the subclass. So my question is if expression self = [super init] return the object of the SUPERCLASS or SUBCLASS. Here I do know that the [super init] could return another object or nil, which makes sense. But assuming everything works fine and neither is it nil nor return another object. If it returns a regular object, does it return the object of the superclass or derived class, which is the class in which this self = [super init] is defined. If it returns an object of the super class, then it makes sense but then since as we know, the object of the superclass knows nothing about the subclass, how can it access the members (fields, messages or methods) of the subclass. If it returns an object of the subclass, then it does not make sense, since there is no way that the superclass can return an object of the derived class because the superclass knows nothing of it.
This is one of the aspects that is really confusing for those who transition from other languages to objective-C.
self = [super init]
will return the object from the superclass. However, note that the object itself has likely been allocated using alloc on your current class.
Consider the following:
#interface A : NSObject
- (instancetype)init;
#end
#interface B : A
- (instancetype)init;
#end
#implementation B
- (instancetype)init {
self = [super init];
if (self) {
// Do initialization for B
}
return self;
}
#end
When you create a new object of a class B you do as follows:
B *obj = [[B alloc] init];
In turn the following happens:
[B alloc]allocates the object with enough space to hold all of B.
Calls init on the newly created object of class B.
Then init on class A is called from B's init method
init on class A will* return the object allocated with B's alloc.
*) Note that the init method may return another object than the allocated one. This is allowed, and is a reason why you usually should assign the result to self.
Read more - What does it mean when you assign [super init] to self?

Understanding the init syntax

I've read quite a few different posts about overriding the init method hoping to find answers for a couple of syntax questions I've been unable to figure out.
(id) init
{
self = [super init];
if(self){
}
return self;
}
So when we send the init method to the superclass of our subclass (let's assume superclass is NSObject) we are initializing all the instance variables inherited from the superclass? What else does this accomplish?
Whenever we create a new class, are we always inheriting instance variables from the parent class? For instance if I create a class called Fraction...
Fraction : NSObject
Fraction * myFrac = [[Fraction alloc] init]
Does the object that myFrac is referencing automatically inherit instance variables that I haven't even declared yet from the parent class?
Lastly when doing
self = [super init];
Aren't we initializing the superclass? What exactly are we storing in self? Is the result of init a pointer to our newly initialized object of our subclass?
I know this has been asked quite a few times, but I couldn't find these answers in the explanations. Sorry for the pileup of questions.
So when we send the init method to the superclass of our subclass
(let's assume superclass is NSObject) we are initializing all the
instance variables inherited from the superclass?
By default all ivars are set to nil/NULL/0/0.0/NO, depending on their type, yet your parent class may want to have them set to something else by default, in that case it will change their value in its init method.
What else does this accomplish?
Whatever NSObject (or your parent class) wants to do when a new object is initialized. Basically the convention says, you must not use an object that has not been initialized (with the exception of release - you may release an object that has never been initialized, that is explicitly allowed). Most other languages know the concept of contsructors, e.g. in Java you'd say new String(...) to create a string object, which does two things: It creates a new string object and it initializes the object by calling its constructor. Java will not allow you to do one thing without doing the other one. In Obj-C these two things are individual steps. alloc creates a new object and init initializes it. Offering two separate steps has advantages in some cases, but it also has the disadvantage that you must rely on conventions (init must be called before the object may be used, yet it must never be called more than once; the compiler will enforce neither one, though, at least not last time I checked that).
Whenever we create a new class, are we always inheriting instance variables from the parent class?
Yes; unless NSObject doesn't have any. Most ivars in Obj-C are private, protected is already a huge exception and you hardly ever see public ones. So basically you should never directly access the ivar of your parent class and thus you don't really have to care if you inherit any or none.
self = [super init];
Aren't we initializing the superclass? What exactly are we storing in
self? Is the result of init a pointer to our newly initialized
object of our subclass?
An init method is allowed to return a different object than the one the method has been called for. E.g. the following is valid:
static MyClass * ThereIsOnlyOneIstance;
- (id)init
{
if (ThereIsOnlyOneInstance) {
[self release];
return [ThereIsOnlyOneInstance retain]; // Without retain if using ARC
}
self = [super init];
if (!self) return nil;
ThereIsOnlyOneInstance = [self retain]; // Just `= self` if using ARC
return self;
}
The following two if-statements will be true:
MyClass a = [[MyClass alloc] init];
MyClass b = [MyClass alloc];
if (a != b) NSLog(#"a != b will be true");
b = [b init];
if (a == b) NSLog(#"Now a == b will be true");
Also an init method may fail, in which case it must release the object and return nil. So when calling [super init] this method may fail. Don't think too much about why it may fail, just keep in mind that it may fail. Now assume that you write the following code:
- (id)init
{
[super init]; // BAD!!! THIS IS BROKEN!!!
// Recent versions of CLANG will even make this
// a hard compiler error and refuse to compile that.
return self;
}
If [super init] failed, the object has been released and nil was returned, but you haven't updated self, you just return whatever value used to be in self prior to calling [super init]. As a result, you return a pointer to a dead object, since at the memory location self points to is no object any longer, this is a dangling pointer and using it can cause your app to crash or otherwise malfunction.
That's why you always must write the output of another init method back to self. Same is true for calling init from outside. The following code is broken:
MyClass x = [MyClass alloc];
[x init]; // BAD!!! THIS BROKEN!!!
It is broken, since init may release the object x points to, so x is now a dangling pointer. You always must capture the output of init back to the variable that should point to the object. The following code is correct:
MyClass x = [MyClass alloc];
x = [x init];
Though usually you alloc/init in just one combined call, of course:
MyClass x = [[MyClass alloc] init];
but that's actually the same, the compiler generated code will look no different than before.
So when we send the init method to the superclass of our subclass
(lets assume superclass is NSObject) we are initializing all the
instance variables inherited from the superclass? what else does this
accomplish?
No. The runtime initializes all variables in an Objective-C context to nil for you (rather than a garbage value without explicit initialization under the C and C++ runtimes). -init exists for setup, and it actually unnecessary for direct subclasses of NSObject, as the default -init method returns self and exits. That said, -init and those methods in its family are often necessary to initialize the member variables and setup state of objects further down the inheritance chain. Don't think of it as a companion to +alloc, rather just a handy setup method that's become the norm in the language.
Does the object that myFrac is referencing automatically inherit
instance variables that I haven't even declared yet from the parent
class?
If by "inherits" you mean that any variables you create still maintain the offset that their superclass hands them, then yes. If by "inherits" you mean "gives access to", then it depends. The #public, #private, and #protected directives determine the access rights a derived class gets to the instance variables of its parents.
Aren't we initializing the super class?
Yes, but understand that init and friends do not actually allocate memory, or setup anything language-specific. They just setup, hand off self, and walk away.
What exactly are we storing in self?
We're storing the object allocated by +alloc and returned to us by NSObject in the form of self. Calling through to super just gives the superclass an opportunity to run its setup, then pass us back a self pointer so we can do our setup.
Is the result of init a pointer to our newly initialized object of our subclass?
Oh, I sure hope so.

(Objective-C)Is it safe to redefine self within class method?

Is it safe to reinitialise self within a class method?
MyClass * a = [[MyClass alloc]init];
#implementation MyClass
{
-(id)init
{
if(self = [super init])
{
...
}
return self;
}
-(void)redefine
{
//??
self = [self init];
}
}
will a point to the reinitialized instance of MyClass?
Thank You,
nonono
Provided that (a) your class and its superclasses can be re-init'ed without leaking memory or resources and (b) you know that your class and its superclasses inits all return the self they are passed and not a reference to some other object, then yes...
Otherwise things will go wrong. Consider your redefine method; in the body of this method self is just a local variable whose contents is initialized to point to some object. Changing the value in that local variable does not change the object it originally pointed at, or the value of any other variables which point to that object. E.g. consider the variation:
#implementation Q
{
- (void) redefine
{
self = [[Q alloc] init]; // changes the *local* self to refer to a new object
}
...
}
...
Q *someQ = [[Q alloc] init]; // allocate an object
[someQ redefine]; // NO effect on someQ, another Q is just created and leaked
Clearly this does not alter someQ, and your version may not either. Your code will have the effect you wish if and only if you know init always returns the object it was passed - which is not guaranteed in Obj-C.
As long as init returns self, which it normally does, nothing will go wrong.
But you probably want to split your initialization to some separate method, which you can call from both init and redefine.
You need to return your new object from -init, not simply assign a new value to self. And you must remember to release the old self, since it was created with +alloc. Caveats aside though, returning a different object from -init is explicitly allowed. That's why you'll see newbies being corrected when they write something like this:
// Bad example! Do NOT do this!
Foo *foo = [Foo alloc];
[foo init];
This is an anti-pattern because -init is not required to return the same object it was called on. That means the above can end up assigning foo to point to an object that's been released, instead of to the object that was initialized in its place. This is why you always see +alloc and `init chained together like so:
Foo *foo = [[Foo alloc] init];
It's also why you need to reassign self when calling super's -init, because it may also have returned a different object.
self = [super init];

Assign the return object of the superclass to self

I have read many posts about this now but I do not still understand it. I would appriciate an answer rather than a link because I probably already have read it.
if (self = [super init]) {
}
return self;
When I am calling the [super init] I know I am calling the method on "self"(the objects address) but I am starting the "method-search" in the superclass. When this returns I assign the object type id to self...This is where I am getting lost.
Am I assigning "self" as an initialized object up to the point of the superclass to self..?
I understand that I am doing this check to stop the initializing if the superclass implementation of the initializer returns nil however I dont understand what I am assinging to self....I thought self was an address to the current object in memory.
Thanks in advance
The assignment has always seemed a bit hacky to me. Its main point is that the superclass might want to return some other instance than the one that was initially allocated:
id foo = [[Foo alloc] init];
#interface Foo : SuperFoo {…}
#implementation Foo
- (id) init
{
self = [super init];
if (!self)
…;
return self;
}
#interface SuperFoo : NSObject {…}
#implementation SuperFoo
- (id) init
{
[self release];
return [OtherClass alloc];
}
This is crazy indeed, but the fact is that [super init] might return an object different from the previous self. See Mike Ash’s blog post, that should make things super clear.
There are two reasons, why that assignment is important:
The designated initializer (di) of the superclass may return nil if initialization fails.
In this case, without the assignment of its return value to self, you would end up in a state that is completely unsafe — most likely, your superclass's di will have released the object pointed at by self in order to not leak memory.
If you went on using that instance and you're lucky you should see a crash in the not so distant future. If you're not that lucky, you're going to mess with some other object's internal state and lose or corrupt user-data before your program crashes.
There are quite a few classes in Cocoa(Touch) — the class-clusters like NSString and NSArray probably being the most prominent examples — that may return a different instance from their di.
The pointer you will receive from [NSString alloc] for example will almost definitely not be the same you'll obtain from a subsequent call to initWithFormat:#"Hello %#!", #"foo".
lets break this into smaller chunks:
1- when your calling [super init] your making your super class run its init function first so it can initialize your object that your inheriting, normally that would be NSObject or any superclass that you decided to extend.
the super init functions will return self at the end of that process, just like your doing in your init function
2- when you do the assignment: self = [super init] your actually assigning that return value from your super into your own.
3- the if around that assignments actually evaluates the success/failure of the super init call, cause if it failed you would have got a nil back and the assignments would have been nil to self. so evaluating nil will return false and you wont run your init code.
4- eventually you also return self (nil if failed / actuall object if it succeeded)
hope that clears it.

Why should I call self=[super init]

Let's say I create my class and its init method. Why should I call and return value of superclass init assigned to self? Which cases it covers?
I would appreciate examples why would I need it for Cocoa superclass and non-Cocoa.
You mean why
self = [super init];
rather than
[super init];
Two reasons:
in initialisation, failure is indicated by returning nil. You need to know if initialisation of the super object failed.
the super class might choose to replace the self returned by +alloc with a different object. This is rare but happens most frequently with class clusters.
Edited in response to Michael's comment:
I can understand why I need to save and return [super init]. But is it just convention and good looking makes us use self as a temporary variable to pass result along?
No. Instance variables are accessed relative to the self pointer, so in the following:
-(id) init
{
self = [super init];
if (self != nil)
{
myBoolIvar = YES;
// The above is an implicit version of self->myBoolIvar = YES;
}
return self;
}
self has clearly got to point to the right block of memory i.e. the one you are going to return.
The other point is that if super init returns different class instance then the rest of the code after that line may not even make sense, lead to memory leaks and crashes, not even talking about the object instantiated from that class.
That could be a problem. If I subclassed NSNumber and [super init] decided to return an NSString (which it could - there's nothing to stop it) that would clearly be a disaster. Whatever super returns from -init must be "compatible" with the subclass in the sense of providing space for ivars and being further subclassible or it's a horrendous bug (unless, of course, the problem is documented). So, in general, you don't need to worry about checking the class. However, do read the documentation. See for instance the section on subclassing NSString in NSString's docs.
I know it is a little bit late for my answer, but I cannot stop myself from posting a link which I found very useful in clearing my doubt about this problem.
Matt Gallagher: What does it mean when you assign [super init] to self?
EDIT: As per the comments, here are the essential points in the link
To understand why self=[super init]; we need to consider many points. Let's tackle it one by one.
What is self
Every method has two hidden parameters: self and _cmd. So the method call
- (id)initWithString:(NSString *)aString
is changed by compiler into a function call like this
id initWithString(id self, SEL _cmd, NSString *aString);
Why do we need self?
The reality is that the compiler uses the self parameter to resolve any reference to an instance variable inside a method.
Suppose that we have a method setValueToZero and value is an instance variable of the class it belongs to, then the implementation
- (void)setValueToZero
{
value = 0;
}
will be converted by the compiler into a function like this
void setValueToZero(id self, SEL _cmd)
{
self->value = 0;
}
Do self already have a value when init is called?
Following is an example of a typical object creation and initialization.
[[MyClass alloc] initWithString:#"someString"]
Here, by the time we get into the initWithString method, self will have the newly allocated object as its value (i.e., the return value from [MyClass alloc]). In fact, it is almost guaranteed to be the correct, final value.
Why self = [super init];?
It is because [super init] is permitted to do one of the three things:
Return its own receiver (the self pointer doesn't change) with inherited instance values initialized.
Return a different object with inherited instance values initialized.
Return nil, indicating failure.
In the first case, assignment has no effect on self. In the third case, the initialization has failed, self is set to nil and it is returned.
The reason behind assignment to self is with the second case. Consider the following
- (id)initWithString:(NSString *)aString
{
self = [super init];
if (self)
{
instanceString = [aString retain];
}
return self;
}
We want the conversion from
instanceString = [aString retain];
to
self->instanceString = [aString retain];
to act on the correct value and thus we have to change the value of self.
When would [super init] return a different object?
In one of the following situations
Singleton object (always returns the singleton instead of any subsequent allocation)
Other unique objects ([NSNumber numberWithInteger:0] always returns the global "zero" object)
Class clusters substitute private subclasses when you initialize an instance of the superclass.
Classes which choose to reallocate the same (or compatible) class based on parameters passed into the initializer.
In all but the final case, continuing to initialize the returned object if it changes is a mistake — the returned object is already completely initialized and isn't necessary related to your class anymore. So a better init approach will be as follows
- (id)initWithString:(NSString *)aString
{
id result = [super init];
if (self == result)
{
instanceString = [aString retain];
}
return result;
}
Conclusion
You don't need to assign [super init] to self to make most classes work. In some obscure cases, it is actually the wrong thing to do.
So why do we continue to assign to self? It's the traditional template for an initializer, and although it's wrong in some cases, it is right in other cases which have been written to expect this approach.
Basically every Objective-C class is a subclass. It's either some class you've specified or NSObject.
In the subclass (your class that you're working on) you call
self = [super init]
What this basically does is calls the super class's (the ones I mentioned above) init method (the constructor) and assigns it to the current class.
This makes sure that the superclasses' initializing method is called.
Now for
If(self)
This basically checks if the above piece of code worked.
This is done to insure that if you call some Instance Variable of the super class, you'll be able to do so.
In most cases, setting self to [super init] does nothing since [super init] will wind up returning self anyway. There are some rare cases, however, where [super init] will return something different. It may return nil if it fails to initialize the superclass for some reason or it may decide to return a completely different object.
Source
Implementing The Designated Initializer
**
self
**
Inside a method, self is an implicit local variable. There is no need to declare it, and it is automatically set to point to the object that was sent the message. (Something like this in Android programming.) Typically, self is used that an object can send a message to itself. Example here:
return self;
**
super
**
When we overriding a method, we want to keep what method of the superclass is doing and have your subclass add something new on that. To make it easier, there is compiler directive in Objective-C called super.
How does super work? Usually when you send a message to an object, the search for a method of that name starts in the object's class. If there is no such method, the search continues in the superclass of the object. The search will continue up the inheritance hierarchy until a suitable method is found. (If it gets to the top of the hierarchy and no method is found, an exception is thrown).
When we send a message to super, we are sending message to self, but the search for the method skips the object's class and start at the superclass. In the above case, we send init message to super. This calls NSObject's init method.
Because you have to initialize the object somehow, and presumably you want to do any initialization a superclass required be done, since you're descending from it.