Grails, Hudson, and Cobertura, which tests are covering my code? - testing

I just started working on an existing grails project where there is a lot of code written and not much is covered by tests. The project is using Hudson with the Cobertura plugin which is nice. As I'm going through things, I'm noticing that even though there are not specific test classes written for code, it is being covered. Is there any easy way to see what tests are covering the code? It would save me a bit of time if I was able to know that information.
Thanks

What you want to do is collect test coverage data per test. Then when some block of code isn't exercised by a test, you can trace it back to the test.
You need a test coverage tool which will do that; AFAIK, this is straightforward to organize. Just run one test and collect test coverage data.
However, most folks also want to know, what is the coverage of the application given all the tests? You could run the tests twice, once to get what-does-this-test-cover information, and then the whole batch to get what-does-the-batch-cover. Some tools ( ours included) will let you combine the coverage from the individual tests, to produce covverage for the set, so you don't have to run them twice.
Our tools have one nice extra: if you collect test-specific coverage, when you modify the code, the tool can tell which individual tests need to be re-run. You need a bit of straightforward scripting for this, to compare the results of the instrumentation data for the changed sources to the results for each test.

Related

BDD with Manual Tests?

We are switching from a classic 'Waterfall' model into more Agile-orient philosophy. We decided to give BDD a try (Cucumber), but we have some issues with migrating some of our 'old' methodologies. The biggest question mark is how manual tests integrates into the cycle.
Let's say the Project Manager defined the Feature and some basic Scenario Outlines. With the test team, we defined around 40 Scenarios for this feature. Some are not possible to automatically test, which means they will have to be tested manually. Execute manual testing when all you have is the feature file, feels wrong. We want to be able to see past failure rate of tests for example. Most of the Test-Cases managers support such features, but they can't work with Feature files. Maintaining the Manual Testcases in external Test-Case manager, will cause never-ending updating issues between the Feature file and the Test-Case manager.
I'm interested to hear if anyone is able to cover this 'mid-ground' and how.
This is not a very unusual case. Even in Agile it may not be possible to automate every scenario. The scrum teams I am working with usually tag them as #manual scenario in the feature file. We have configured our automation suite (Cucumber - Ruby) to ignore these tags while running nightly jobs. One problem with this is, as you have mentioned, we won't know what was the outcome of manual tests as the testers document the results locally.
My suggestion for this was to document the results of each iteration in a YML or any other file format that suits the purpose. This file should be part of the automation suite and should be checked in the repository. So to start with you have results documented along with the automation suite. Later when you have the resource and time, you can add a functionality to your automation suite to read this file and generate a report either with other automation results or separately. Until then your version control should help you to track all previous results.
Hope this helps.
To add to #Eswar's answer, if you're using Cucumber (or one of it's siblings), one option would be to execute the test runner manually and include prompts for the tester to check certain aspects. They then pass/fail the test according to their judgement.
This is often useful for aesthetic aspects e.g. cross-browser rendering, element alignment, correct images used, etc.
As #Eswar mentioned, you can exclude these tests from your automated runs by tagging them.
See this article for an example.
Test cases that cannot be automated are a poor fit for a cucumber test. We have a bunch of these edge cases. It is nigh impossible to get Selenium to verify PDF documents well. Same thing for CSV downloads (not impossible, but not worth the effort). Look and feel tests simply require human eyes at this point. Accessibility testing with screen readers is best done manually as well.
For that, be sure to record the acceptance criteria in the user story in whichever tool you use to track work items. Write a manual test case. The likes of Azure DevOps, Jira, IBM Rational Team Concert and their ilk have ways to record manual test plans, link them to stories, and record the results of executing a manual test.
I would remove the manual test cases from the cucumber tests, and rely on the acceptance criteria for the story, and link the story to some sort of manual test case, be it in a tool or a spreadsheet.
Sometimes you just need to compromise.
We use Azure DevOps with Test Plans + some custom code to synchronize cucumber tests to ADO. I can describe how we’ve realized it in our projects:
We start with the cucumber file first. Each User Story has its own Feature file. The scenarios in the Feature are the acceptance criteria for the story. We end up with lots of Feature files, so we use naming conventions and folders to organize them.
We annotate the top of the Feature file with a tag to the User Story, eg #Story-1234
We‘ve written a command line utility that reads the cucumber files with these tags. It then fetches all the Test Suites in the Test Plan that are linked to Stories. In ADO, a story can only be linked to a single test suite. If a Test Suite doesn’t exist for that Story, our tool creates one.
For each Scenario, the tool creates a an ADO Test Case and then annotates the Scenario with the Test Case ID. This creates amazing traceability for each User Story as the related Test Cases are automatically linked to the Story in the Azure DevOps UI
Although we don’t do this, we could populate the TestCase with the step definitions from our cucumber Scenario. It’s a basic XML structure that describes the steps to take. This would be useful if we wanted to manually execute the test case using the Azure DevOps Test Case UI. Since we focus primarily on automation, we rely on the steps in our Feature files and our ADO Test Cases end up being symbolic links back to cucumber Scenarios.
Because our cucumber tests are written in C# (SpecFlow), we can get the full class name and method for the cucumber test code. Our tool is able to update the Azure DevOps Test Case with the automation details.
Any test case that isn’t ready for automation or must be done manually, we annotate the Scenario with a #ignore or #manual tag.
Using Azure DevOps Pipelines, we use the Visual Studio Test task to run our tests. The important point here is we execute the Test Plan option. This option fetches the Test Cases in the Test Plan that have automation and then executes the specific cucumber tests. The out-of-the-box functionally updates the Test Case statuses with the test results.
After running through automation, we use the Test Plan Report in Azure DevOps which shows the Test Case execution status over time and can distinguish between test automated and manual test cases.
We execute any remaining manual test cases to complete the Test Plan
For us, we often found that the manual cases that cannot be automated are exception cases, or cases that depend on external environment (for example malformed data, network connection not available, maintenance, first time guide...). These cases require special setup to simulate the environment when they happen.
Ideally, I believe it is possible to cover everything, given that you are prepared to go as far as you can to make it happen. But in reality, it is most often too much an effort needed that we prefer the hybrid approach of mixed manual-automatic test cases. We do, however, try to convert those exception cases over the time to automatic ones, by setting up separate environment to simulate exception cases and write automation tests against them.
Nevertheless, even with that effort, there would be cases when it's impossible to simulate, and I believe they should be covered by technical tests from engineers.
You could use an approach similar to the following example:
http://concordion.org/Example.html
When you use a build or continuous integration system to track your test runs, you could add simple specifications / tests for your manual cases that contain a text comparison (e.g. "pass" or "fail"). Then you would need to update the spec after each manual test run, check it in, and start the tests in your build / continuous Integration system. Then the manual results would be recorded together with the results of the automated test execution.
If you would use a tool like Concordion+ (https://code.google.com/p/concordion-plus/) you could even write a summary specification, which could contain scenarios for each of your manual tests. Each one would be reported as individual test result in your test execution environment.
Cheers
taking screen shots seems to be a good idea, you can still automate the verification but will need to go an extra mile. for instance when using Selenium you can add Sikuli(NB: u can't run headless test) to compare results (images) or take a screenshot with Robot (java.awt) use OCR to read text and assert or verify(TestNG)

Running test coverage separately from test execution

We're configuring build steps in TeamCity. Since we have huge problems with test coverage reports (they were there and then inexplainably vanished), we're trying to find a work-trough (asking and bouting a question directly related to our issue yielded very cold response).
Please note that I'm not looking for an opinion but rather a technical knowledge base to support (or kill) the choice of ours. And yes, I've checked the build logs - these are posted in the other thread. This question is about the (in?)sanity of trying an alternative approach. :)
Is it recommended to run a build step for test and then another build step for test coverage?
Does it even makes sense to run these in separate build steps?!
What gains and disadvantages are there to running coverage bundled with/separately from the tests themselves?
Test coverage reports are generated during unit test runs. Unless your problem is with reading generated reports, it doesn't make sense to "run them in separate build steps". Test coverage tells you what parts of your code were run WHILE the tests were running- I don't see how they could be independent.
It may make more sense to ask for help with the test coverage reports no longer being generated...

Tool or eclipse base plugin available for generate test cases for SalesForce platform related Apex classes

Can any one please tell me is there any kind of tools or eclipse base plugins available for generate relevant test cases for SalesForce platform related Apex classes. It seems with code coverage they are not expecting out come like we expect with JUnit, they want to cover whether, test cases are going through the flows of the source classes (like code go through).
Please don't get this post in wrong, I don't want anyone is going to write test cases for my codes :). I have post this question due to nature of SalesForce expecting that code coverage should be. Thanks.
Although Salesforce requires a certain percentage of code coverage for your test cases, you really need to be writing cases that check the results to ensure that the code behaves as designed.
So, even if there was a tool that could generate code to get 100% coverage of your test class, it wouldn't be able to test the results of those method calls, leaving you with a false sense of having "tested code".
I've found that breaking up long methods into separate, sometimes static, methods makes it easier to do unit testing. You can test each individual method, and not worry so much about tweaking parameters to a single method so that it covers all execution paths.
it's now possible to generate test classes automatically for your class/trigger/batch. You can install "Test Class Generator" app from AppExchange and see it working.
This would really help you generating test class and saves lot of your development time.

Do tests belong in-tree alongside the code, or in a serarate test-tree?

When designing a new testing system, Should I keep tests in tree with the source-code, for example, in a test sub-directory of the application root. Therefore running the tests for a given branch of your code only against that branch.
OR
Should I keep a separate source tree for the tests, and run the latest tests against all branches of the project?
Our team, and most teams where I work put unit tests in the same tree as the code, but put the rest of the tests (aka the tests the test team writes) in a separate tree. Organizationally, the test tree mirrors the code tree (i.e. the directory structure is the same (mostly)).
But we write a lot of test code.
I do it both ways. It depends:
If the system under test is distributed as binary, I keep tests next to the code. I prefer this because it makes it easier to switch between tests and source. It also increases the visibility of tests to other developers, especially those who aren't yet writing their own tests.
However, if the system under test is distributed as source code, I keep tests in a parallel tree so that people can choose to get the working system only.
I think keeping them with the source code is better. It's often the case that expected behavior for a given piece of code changes, and the tests then change as well. Also, as you add functionality, you will get new tests that would fail on older code.
That said, it makes good sense to have tests in a separate directory of your source repository, so you can easily get rid of them when releasing. But they should be versioned together with the code they're testing, in any case.

Is there a tool for creating historical report out of j/nunit results

Looking for a way to get a visual report about:
overall test success percentage over time (information about if and how quickly tests are going greener)
visualised single test results over time (to easily notice test gone red that has been green for long time or vice versa to pay attention to a test that has just gone green)
any other visual statistics that would benefit testers and the project as a whole
Basically a tool that would generate results from the whole test results directory not just off the single (daily) run.
Generally it seems it could be done using XSLT, but it doesn't seem to have much flexibility to work with multiple files at the same time.
Does such a tool exist already?
I feel fairly courageous to claim that most Continuous Integration Engines such as Hudson (for Java) provide such capability either natively or through plugins. In Hudson's case there's a few code coverage plugins available already and I think it does basic graphs from unit tests automatically by itself.
Oh and remember to configure the CI properly, for example our Hudson polls CVS every 10 minutes and if it sees any changes, it does all the associated tricks (get updated .java files, compile, run tests, verify dependencies etc.) to see if the build is still OK or not.
Hudson will do this and it will work with Nunit (here), Junit (natively), and MSTest.exe tests using the steps I outline here. It does all that you require and more. Even if you want it to ONLY run tests and give you feedback on those, it can.
There's such new report supporting NUnit \ JUnit called Allure. To retrieve information from NUnit you need to use NUnit adapter, for JUnit - read the following wiki page. You can use it with Jenkins via respective plugin.