Mutable vs. Immutable with business logic objects - oop

A lot has been said about mutable / immutable objects in the data model.
But what about the business logic? For example: a CD player. One class is responsible for playing the CD.
// Immutable version:
class Player
{
CD cd;
public Player(CD cd) { ... }
}
// Mutable version:
class Player
{
CD cd;
public void ChangeCD(CD cd) { ... }
}
I can think of several subtle advantages and disadvantages to both versions.
For example, when player is mutable, other objects can take the player and it stays valid even if the CD changes. When player is immutable, you need a wrapper object (e.g. Command Pattern) that gets updated when a new Player is created.
Which version is preferable in which cases? Are there any general guidelines?

Here's a third option.
class Player
{
// private CD myCD <- no private field for the CD
public Player() {}
public void playCD (CD cd) {}
}
A player should never own a CD object. It should just be told here is a CD object, play it.
A better option would be
class CDPlayer : DataPlayer
{
public Player() {}
public void playData (IData cd) {}
}
class CD : IData {}
If you reduce the amount of coupling between your CD and Player then you really don't have to think too hard about this.
I believe your example is a bit flawed with respect to your actual question.

Related

Object-Oriented Programming: How to properly design, implement, and name a method which involve object interactions?

Language doesn't matter, it is generic object-oriented question(take java/C# etc). Take a simple concept.
A Person has a Car. The Person can drive the Car. Car doesn't usually drive or wander around, right? ``
But, usually in codes, we see methods like myCarObject.Drive().
Now when a Person is introduced, and the Person drives the car:
======================= First Way =================================
class Car{
int odometer;void drive(){ odometer++; }
}
class Person{
void driveCar(Car c) { c.drive(); }
}
========================================================================
================================ Alternative Way =======================
public Car{
int odometer; // car doesn't do the driving, it's the person, so no drive()
}
public Person{
void driveCar(Car c) { c.odometer++; }
}
========================== and other ways....============================
===========================================================================
So, my question is clear: what is the best way to design/implement/name methods in similar cases?
It's a bit difficult to make simplified examples like that make any sense, but here is an attemt:
A Car class would generally contain methods for the things that the object can do by itself with the information that it has, for example:
public class Car {
private bool engineOn;
public int Speed { get; private set; }
public void Start() { engineOn = true; Speed = 0; }
public void Accelerate() { Speed++; }
public void Break() { if (Speed > 0) Speed--; }
public void Stop() { Speed = 0; engineOn = false; };
}
A Person class would would manage a car by controlling the things that the car itself is not aware of in its environment. Example:
public class Person {
public void Drive(Car car, int speedLimit) {
car.Start();
while (car.Speed < speedLimit) {
car.Accelerate();
}
while (car.Speed > 0) {
car.Break();
}
car.Stop();
}
}
There are of course many different variations of how you can use OO in each situation.
If you wish to express your logic in a way that closely resembles human language semantics, you'll want to invoke an action or function on an entity which is logically capable of carrying it out.
When behavior cannot be placed on an object (in the sense that it has state), you put it in a Service or Utility class, or some similar construct. Authenticate is a classic example of something that doesn't make much sense to invoke on a user, or on any other object. For this purpose, we create an AuthenticationProvider (or service, whichever you prefer).
In your scenario of a Person and a Car, it's one object invoking behavior on another. person.Drive(car) would therefore make the most sense.
If a Person owns a Car (and a Car is always owned by a Person), then person.Drive() might be the only thing you need to do. The Drive() method will have access to the properties of person, one of which is its car.
An important thing to note here is the concept of loose coupling. In more complex scenario's, you don't want to all sorts of cross-references within your model. But by using interfaces and abstractions you'll often find yourself putting methods on objects where they don't really belong from a real-world perspective. The trick is to be aware of, and utilize a language's features for achieving loose coupling and realistic semantics simultaneously.
Keeping in mind that in a real application you'll have the bootstrapping code tucked away elsewhere, here is an example of how that might look like in C#:
We start off by defining interfaces for the things that can transport (ITransporter), and the things that can be transported (ITransportable):
public interface ITransportable
{
void Transport(Transportation offset);
}
public interface ITransporter
{
void StartTransportation(ITransportable transportable);
void StopTransportation(ITransportable transportable);
}
Note the Transportation helper class which contains the information necessary to re-calculate the current location of an ITransportable after it has been transported for a certain period of time with a certain velocity and whatnot. A simple example:
public class Transportation
{
public double Velocity { get; set; }
public TimeSpan Duration { get; set; }
}
We then proceed to create our implementations for these. As you might have guessed, Person will derive from ITransportable and Car derives from ITransporter:
public class Person : ITransportable
{
public Tuple<double, double> Location { get; set; }
private ITransporter _transporter;
void ITransportable.Transport(Transportation offset)
{
// Set new location based on the offset passed in by the car
}
public void Drive<TCar>(TCar car) where TCar : ITransporter
{
car.StartTransportation(this);
_transporter = car;
}
public void StopDriving()
{
if (_transporter != null)
{
_transporter.StopTransportation(this);
}
}
}
Pay close attention to what I did there. I provided an explicit interface implementation on the Person class. What this means is that Transport can only be invoked when the person is actually referenced as an ITransportable - if you reference it as a Person, only the Drive and StopDriving methods are visible.
Now the Car:
public class Car : ITransporter
{
public double MaxVelocity { get; set; }
public double Acceleration { get; set; }
public string FuelType { get; set; }
private Dictionary<ITransportable, DateTime> _transportations = new Dictionary<ITransportable, DateTime>();
void ITransporter.StartTransportation(ITransportable transportable)
{
_transportations.Add(transportable, DateTime.UtcNow);
}
void ITransporter.StopTransportation(ITransportable transportable)
{
if (_transportations.ContainsKey(transportable))
{
DateTime startTime = _transportations[transportable];
TimeSpan duration = DateTime.UtcNow - startTime;
var offset = new Transportation
{
Duration = duration,
Velocity = Math.Max((Acceleration*duration.Seconds), MaxVelocity)/2
};
transportable.Transport(offset);
_transportations.Remove(transportable);
}
}
}
Following the guidelines we set earlier, a Car will not have any (visible) methods on it, either. Unless you explicitly reference it as an ITransporter, which is exactly what happens inside of the Person's Drive and StopDriving methods.
So a Car here is just a Car. It has some properties, just like a real car, based on which you can determine a location offset after a person drove it for a certain amount of time. A Car cannot "Drive", "Start", or anything like that. A Person does that to a Car - a Car does not do that to itself.
To make it more realistic you would have to add all sorts of additional metadata that affect a Car's average velocity over a certain period of time on a certain route. Truth is, you probably won't end up modeling something like this anyway. I stuck with your model just to illustrate how you could retain natural language semantics if you were working with objects that make it challenging to do so.
An example of how these classes may be used by a client:
Person person = new Person();
Car car = new Car();
// car.Transport(); will not compile unless we explicitly
// cast it to an ITransporter first.
// The only thing we can do to set things in motion (no pun intended)
// is invoke person.Drive(car);
person.Drive(car);
// some time passes..
person.StopDriving();
// currentLocation should now be updated because the Car
// passed a Transportation object to the Person with information
// about how quickly it moved and for how long.
var currentLocation = person.Location;
As I already eluded before, this is by no means a good implementation of this particular scenario. It should, however, illustrate the concept of how to solve your problem: to keep the logic of "transportation" inside of the "transporter", without the need to expose that logic through public methods. This gives you natural language semantics in your client code while retaining proper separation of concerns.
Sometimes you just need to be creative with the tools you have.
In second case, it's like you're saying that the task of driving a car consist in incrementing the odometer. It's clearly not the driver's business, and a violation of encapsulation. The odometer should probably be an implementation detail.
In first case, the car maybe does not drive itself, but it advances, so you could use another verb. But car.advance() is maybe not how a Person drives cars... Even if it was thru vocal commands, the decoding of the command would probably result in a sequence of more basic commands.
I very much like the answer of Guffa which tries to address what driving a car could mean. But of course, you may have another context...

Looking for a Ninject scope that behaves like InRequestScope

On my service layer I have injected an UnitOfWork and 2 repositories in the constructor. The Unit of Work and repository have an instance of a DbContext I want to share between the two of them. How can I do that with Ninject ? Which scope should be considered ?
I am not in a web application so I can't use InRequestScope.
I try to do something similar... and I am using DI however, I need my UoW to be Disposed and created like this.
using (IUnitOfWork uow = new UnitOfWorkFactory.Create())
{
_testARepository.Insert(a);
_testBRepository.Insert(b);
uow.SaveChanges();
}
EDIT: I just want to be sure i understand… after look at https://github.com/ninject/ninject.extensions.namedscope/wiki/InNamedScope i though about my current console application architecture which actually use Ninject.
Lets say :
Class A is a Service layer class
Class B is an unit of work which take into parameter an interface (IContextFactory)
Class C is a repository which take into parameter an interface (IContextFactory)
The idea here is to be able to do context operations on 2 or more repository and using the unit of work to apply the changes.
Class D is a context factory (Entity Framework) which provide an instance (keep in a container) of the context which is shared between Class B et C (.. and would be for other repositories aswell).
The context factory keep the instance in his container so i don’t want to reuse this instance all the name since the context need to be disposed at the end of the service operaiton.. it is the main purpose of the InNamedScope actually ?
The solution would be but i am not sure at all i am doing it right, the services instance gonna be transcient which mean they actually never disposed ? :
Bind<IScsContextFactory>()
.To<ScsContextFactory>()
.InNamedScope("ServiceScope")
.WithConstructorArgument(
"connectionString",
ConfigurationUtility.GetConnectionString());
Bind<IUnitOfWork>().To<ScsUnitOfWork>();
Bind<IAccountRepository>().To<AccountRepository>();
Bind<IBlockedIpRepository>().To<BlockedIpRepository>();
Bind<IAccountService>().To<AccountService>().DefinesNamedScope("ServiceScope");
Bind<IBlockedIpService>().To<BlockedIpService>().DefinesNamedScope("ServiceScope");
UPDATE: This approach works against NuGet current, but relies in an anomaly in the InCallscope implementation which has been fixed in the current Unstable NuGet packages. I'll be tweaking this answer in a few days to reflect the best approach after some mulling over. NB the high level way of structuring stuff will stay pretty much identical, just the exact details of the Bind<DbContext>() scoping will work. (Hint: CreateNamedScope in unstable would work or one could set up the Command Handler as DefinesNamedScope. Reason I dont just do that is that I want to have something that composes/plays well with InRequestScope)
I highly recommend reading the Ninject.Extensions.NamedScope integration tests (seriously, find them and read and re-read them)
The DbContext is a Unit Of Work so no further wrapping is necessary.
As you want to be able to have multiple 'requests' in flight and want to have a single Unit of Work shared between them, you need to:
Bind<DbContext>()
.ToMethod( ctx =>
new DbContext(
connectionStringName: ConfigurationUtility.GetConnectionString() ))
.InCallScope();
The InCallScope() means that:
for a given object graph composed for a single kernel.Get() Call (hence In Call Scope), everyone that requires an DbContext will get the same instance.
the IDisposable.Dispose() will be called when a Kernel.Release() happens for the root object (or a Kernel.Components.Get<ICache>().Clear() happens for the root if it is not .InCallScope())
There should be no reason to use InNamedScope() and DefinesNamedScope(); You don't have long-lived objects you're trying to exclude from the default pooling / parenting / grouping.
If you do the above, you should be able to:
var command = kernel.Get<ICommand>();
try {
command.Execute();
} finally {
kernel.Components.Get<ICache>().Clear( command ); // Dispose of DbContext happens here
}
The Command implementation looks like:
class Command : ICommand {
readonly IAccountRepository _ar;
readonly IBlockedIpRepository _br;
readonly DbContext _ctx;
public Command(IAccountRepository ar, IBlockedIpRepository br, DbContext ctx){
_ar = ar;
_br = br;
_ctx = ctx;
}
void ICommand.Execute(){
_ar.Insert(a);
_br.Insert(b);
_ctx.saveChanges();
}
}
Note that in general, I avoid having an implicit Unit of Work in this way, and instead surface it's creation and Disposal. This makes a Command look like this:
class Command : ICommand {
readonly IAccountService _as;
readonly IBlockedIpService _bs;
readonly Func<DbContext> _createContext;
public Command(IAccountService #as, IBlockedIpServices bs, Func<DbContext> createContext){
_as = #as;
_bs = bs;
_createContext = createContext;
}
void ICommand.Execute(){
using(var ctx = _createContext()) {
_ar.InsertA(ctx);
_br.InsertB(ctx);
ctx.saveChanges();
}
}
This involves no usage of .InCallScope() on the Bind<DbContext>() (but does require the presence of Ninject.Extensions.Factory's FactoryModule to synthesize the Func<DbContext> from a straightforward Bind<DbContext>().
As discussed in the other answer, InCallScope is not a good approach to solving this problem.
For now I'm dumping some code that works against the latest NuGet Unstable / Include PreRelease / Instal-Package -Pre editions of Ninject.Web.Common without a clear explanation. I will translate this to an article in the Ninject.Extensions.NamedScope wiki at some stagehave started to write a walkthrough of this technique in the Ninject.Extensions.NamedScope wiki's CreateNamedScope/GetScope article.
Possibly some bits will become Pull Request(s) at some stage too (Hat tip to #Remo Gloor who supplied me the outline code). The associated tests and learning tests are in this gist for now), pending packaging in a proper released format TBD.
The exec summary is you Load the Module below into your Kernel and use .InRequestScope() on everything you want created / Disposed per handler invocation and then feed requests through via IHandlerComposer.ComposeCallDispose.
If you use the following Module:
public class Module : NinjectModule
{
public override void Load()
{
Bind<IHandlerComposer>().To<NinjectRequestScopedHandlerComposer>();
// Wire it up so InRequestScope will work for Handler scopes
Bind<INinjectRequestHandlerScopeFactory>().To<NinjectRequestHandlerScopeFactory>();
NinjectRequestHandlerScopeFactory.NinjectHttpApplicationPlugin.RegisterIn( Kernel );
}
}
Which wires in a Factory[1] and NinjectHttpApplicationPlugin that exposes:
public interface INinjectRequestHandlerScopeFactory
{
NamedScope CreateRequestHandlerScope();
}
Then you can use this Composer to Run a Request InRequestScope():
public interface IHandlerComposer
{
void ComposeCallDispose( Type type, Action<object> callback );
}
Implemented as:
class NinjectRequestScopedHandlerComposer : IHandlerComposer
{
readonly INinjectRequestHandlerScopeFactory _requestHandlerScopeFactory;
public NinjectRequestScopedHandlerComposer( INinjectRequestHandlerScopeFactory requestHandlerScopeFactory )
{
_requestHandlerScopeFactory = requestHandlerScopeFactory;
}
void IHandlerComposer.ComposeCallDispose( Type handlerType, Action<object> callback )
{
using ( var resolutionRoot = _requestHandlerScopeFactory.CreateRequestHandlerScope() )
foreach ( object handler in resolutionRoot.GetAll( handlerType ) )
callback( handler );
}
}
The Ninject Infrastructure stuff:
class NinjectRequestHandlerScopeFactory : INinjectRequestHandlerScopeFactory
{
internal const string ScopeName = "Handler";
readonly IKernel _kernel;
public NinjectRequestHandlerScopeFactory( IKernel kernel )
{
_kernel = kernel;
}
NamedScope INinjectRequestHandlerScopeFactory.CreateRequestHandlerScope()
{
return _kernel.CreateNamedScope( ScopeName );
}
/// <summary>
/// When plugged in as a Ninject Kernel Component via <c>RegisterIn(IKernel)</c>, makes the Named Scope generated during IHandlerFactory.RunAndDispose available for use via the Ninject.Web.Common's <c>.InRequestScope()</c> Binding extension.
/// </summary>
public class NinjectHttpApplicationPlugin : NinjectComponent, INinjectHttpApplicationPlugin
{
readonly IKernel kernel;
public static void RegisterIn( IKernel kernel )
{
kernel.Components.Add<INinjectHttpApplicationPlugin, NinjectHttpApplicationPlugin>();
}
public NinjectHttpApplicationPlugin( IKernel kernel )
{
this.kernel = kernel;
}
object INinjectHttpApplicationPlugin.GetRequestScope( IContext context )
{
// TODO PR for TrgGetScope
try
{
return NamedScopeExtensionMethods.GetScope( context, ScopeName );
}
catch ( UnknownScopeException )
{
return null;
}
}
void INinjectHttpApplicationPlugin.Start()
{
}
void INinjectHttpApplicationPlugin.Stop()
{
}
}
}

Composition, I don't quite get this?

Referring to the below link:
http://www.javaworld.com/javaworld/jw-11-1998/jw-11-techniques.html?page=2
The composition approach to code reuse provides stronger encapsulation
than inheritance, because a change to a back-end class needn't break
any code that relies only on the front-end class. For example,
changing the return type of Fruit's peel() method from the previous
example doesn't force a change in Apple's interface and therefore
needn't break Example2's code.
Surely if you change the return type of peel() (see code below) this means getPeelCount() wouldn't be able to return an int any more? Wouldn't you have to change the interface, or get a compiler error otherwise?
class Fruit {
// Return int number of pieces of peel that
// resulted from the peeling activity.
public int peel() {
System.out.println("Peeling is appealing.");
return 1;
}
}
class Apple {
private Fruit fruit = new Fruit();
public int peel() {
return fruit.peel();
}
}
class Example2 {
public static void main(String[] args) {
Apple apple = new Apple();
int pieces = apple.peel();
}
}
With a composition, changing the class Fruit doesn't necessary require you to change Apple, for example, let's change peel to return a double instead :
class Fruit {
// Return String number of pieces of peel that
// resulted from the peeling activity.
public double peel() {
System.out.println("Peeling is appealing.");
return 1.0;
}
}
Now, the class Apple will warn about a lost of precision, but your Example2 class will be just fine, because a composition is more "loose" and a change in a composed element does not break the composing class API. In our case example, just change Apple like so :
class Apple {
private Fruit fruit = new Fruit();
public int peel() {
return (int) fruit.peel();
}
}
Whereas if Apple inherited from Fruit (class Apple extends Fruit), you would not only get an error about an incompatible return type method, but you'd also get a compilation error in Example2.
** Edit **
Lets start this over and give a "real world" example of composition vs inheritance. Note that a composition is not limited to this example and there are more use case where you can use the pattern.
Example 1 : inheritance
An application draw shapes into a canvas. The application does not need to know which shapes it has to draw and the implementation lies in the concrete class inheriting the abstract class or interface. However, the application knows what and how many different concrete shapes it can create, thus adding or removing concrete shapes requires some refactoring in the application.
interface Shape {
public void draw(Graphics g);
}
class Box implement Shape {
...
public void draw(Graphics g) { ... }
}
class Ellipse implements Shape {
...
public void draw(Graphics g) { ... }
}
class ShapeCanvas extends JPanel {
private List<Shape> shapes;
...
protected void paintComponent(Graphics g) {
for (Shape s : shapes) { s.draw(g); }
}
}
Example 2 : Composition
An application is using a native library to process some data. The actual library implementation may or may not be known, and may or may not change in the future. A public interface is thus created and the actual implementation is determined at run-time. For example :
interface DataProcessorAdapter {
...
public Result process(Data data);
}
class DataProcessor {
private DataProcessorAdapter adapter;
public DataProcessor() {
try {
adapter = DataProcessorManager.createAdapter();
} catch (Exception e) {
throw new RuntimeException("Could not load processor adapter");
}
}
public Object process(Object data) {
return adapter.process(data);
}
}
static class DataProcessorManager {
static public DataProcessorAdapter createAdapter() throws ClassNotFoundException, InstantiationException, IllegalAccessException {
String adapterClassName = /* load class name from resource bundle */;
Class<?> adapterClass = Class.forName(adapterClassName);
DataProcessorAdapter adapter = (DataProcessorAdapter) adapterClass.newInstance();
//...
return adapter;
}
}
So, as you can see, the composition may offer some advantage over inheritance in the sense that it allows more flexibility in the code. It allows the application to have a solid API while the underlaying implementation may still change during it's life cycle. Composition can significantly reduce the cost of maintenance if properly used.
For example, when implementing test cases with JUnit for Exemple 2, you may want to use a dummy processor and would setup the DataProcessorManager to return such adapter, while using a "real" adapter (perhaps OS dependent) in production without changing the application source code. Using inheritance, you would most likely hack something up, or perhaps write a lot more initialization test code.
As you can see, compisition and inheritance differ in many aspects and are not preferred over another; each depend on the problem at hand. You could even mix inheritance and composition, for example :
static interface IShape {
public void draw(Graphics g);
}
static class Shape implements IShape {
private IShape shape;
public Shape(Class<? extends IShape> shape) throws InstantiationException, IllegalAccessException {
this.shape = (IShape) shape.newInstance();
}
public void draw(Graphics g) {
System.out.print("Drawing shape : ");
shape.draw(g);
}
}
static class Box implements IShape {
#Override
public void draw(Graphics g) {
System.out.println("Box");
}
}
static class Ellipse implements IShape {
#Override
public void draw(Graphics g) {
System.out.println("Ellipse");
}
}
static public void main(String...args) throws InstantiationException, IllegalAccessException {
IShape box = new Shape(Box.class);
IShape ellipse = new Shape(Ellipse.class);
box.draw(null);
ellipse.draw(null);
}
Granted, this last example is not clean (meaning, avoid it), but it shows how composition can be used.
Bottom line is that both examples, DataProcessor and Shape are "solid" classes, and their API should not change. However, the adapter classes may change and if they do, these changes should only affect their composing container, thus limit the maintenance to only these classes and not the entire application, as opposed to Example 1 where any change require more changes throughout the application. It all depends how flexible your application needs to be.
If you would change Fruit.peel()'s return type, you would have to modify Apple.peel() as well. But you don't have to change Apple's interface.
Remember: The interface are only the method names and their signatures, NOT the implementation.
Say you'd change Fruit.peel() to return a boolean instead of a int. Then, you could still let Apple.peel() return an int. So: The interface of Apple stays the same but Fruit's changed.
If you would have use inheritance, that would not be possible: Since Fruit.peel() now returns a boolean, Apple.peel() has to return an boolean, too. So: All code that uses Apple.peel() has to be changed, too. In the composition example, ONLY Apple.peel()'s code has to be changed.
The key word in the sentence is "interface".
You'll almost always need to change the Apple class in some way to accomodate the new return type of Fruit.peel, but you don't need to change its public interface if you use composition rather than inheritance.
If Apple is a Fruit (ie, inheritance) then any change to the public interface of Fruit necessitates a change to the public interface of Apple too. If Apple has a Fruit (ie, composition) then you get to decide how to accomodate any changes to the Fruit class; you're not forced to change your public interface if you don't want to.
Return type of Fruit.peel() is being changed from int to Peel. This doesn't meant that the return type of Apple.peel() is being forced to change to Peel as well. In case of inheritance, it is forced and any client using Apple has to be changed. In case of composition, Apple.peel() still returns an integer, by calling the Peel.getPeelCount() getter and hence the client need not be changed and hence Apple's interface is not changed ( or being forced to be changed)
Well, in the composition case, Apple.peel()'s implementation needs to be updated, but its method signature can stay the same. And that means the client code (which uses Apple) does not have to be modified, retested, and redeployed.
This is in contrast to inheritance, where a change in Fruit.peel()'s method signature would require changes all way into the client code.

OO design for my (basic) Pacman game

I'm trying to create a basic Pacman game in C++ (I'll use Java syntax in this question as this is somewhat easier to demonstrate), but I can't find a good design option.
So far I have 4 classes:
- Monster: Can be subclassed for monster-specific behaviour and contains all logic for the monsters
- Player: Contains player-logic
- Map: Contains a 2d array representing the map. This array specifies which positions are walls or Pacman food
- Game: contains a Player, a Map and a list of Monsters.
To keep it simple:
public class Game {
Player player;
Map map;
ArrayList<Monster> monsters;
public Game() {
player = new Player();
map = new Map();
monsters = new ArrayList<Monster();
monsters.add(new ScaryMonster());
monsters.add(new DumpMonster());
}
public void update() {
player.update();
map.update();
for (Monster monster: monsters) {
monster.update();
}
public void draw() {
map.draw();
player.draw();
for (Monster monster: monsters) {
monster.draw();
}
}
So all I have to do now is to create a Game object and call update() and draw() on it every time. Very simple. But it doesn't work.
Assume I call update() on the player-object and the player (which is the Pacman ofcourse) hits food. In that case, the map-object should get notified of this (and the position) to remove the food from the 2d-array. Assume the player kills a monster, the position of the monster should get changed (the Monster class has a "position field"). And you can imagine a lot more of these situations.
An option would be to pass the map and monster object as parameters in the update() and draw() method of the player object. And to pass the player and monster objects as parameters in the method calls of map. But that surely doesn't sound like a good OO design.
What's a good OO way to solve this? I was thinking about using the Observer pattern (so Game is the subject, player, map and monsters are observers), but that doesn't make any sense: that way the observers will have to let the subject know of any changes, which is obviously not the correct way of using this.
Any tips would be very welcome.
Thank you very much :)
Why don't you try mapping actions?
Every action has a reaction. So let's say the pacman hits food. That's an action, "hitting food", which in turn has a reaction (notifying the map, or the food, or whatever you like) that the food is not there any longer.
Now imagine the pacman hits a monster, that's another action... what would be the reaction to that? Well it might cause the monster to get dead (a call to the BeDeath method :P) or it could cause the pacman to get death... whatever it is it allow you to chain actions to reactions in the game.
That means the logic of the game, the rules would be in the game class, who in addition already knows all the elements needed and can communicate with each one.
Edit: A simple example (very simple, as the game gets more complex you'll need to think better about actions and reactions structure)
public void IGameInfo
{
List<Monster> Monsters {get;}
Pacman Pacman {get;}
Map Map {get;}
}
public void ComputeReactions()
{
foreach (actionChecker in Actions)
{
actionChecker.Check(gameInfo);
}
}
public void ComputeDotEaten(IGameInfo gameInfo)
{
foreach (dot in gameInfo.Map.Dots)
if (pacman.location == dot.location)
dot.MarkEaten();
}
public void ComputeMonsterEaten(IGameInfo gameInfo)
{
foreach (Monster in gameInfo.monsters)
if (gameInfo.pacman.location == gameInfo.monster.location &&
gameInfo.pacman.Invulnerable)
monster.MarkDeath();
else
Game.EndGame();
}
Or if you like you could also map the reactions
public void ComputeDotEaten(IGameInfo gameInfo)
{
foreach (dot in gameInfo.Map.Dots)
if (pacman.location == dot.location)
Reactions["DotEaten"].Execute(dot);
}
Note that for that to work all you reactions must share a common signature (i.e, taking an array of objects that are cast to the expected parameters)

What is the real significance(use) of polymorphism

I am new to OOP. Though I understand what polymorphism is, but I can't get the real use of it. I can have functions with different name. Why should I try to implement polymorphism in my application.
Classic answer: Imagine a base class Shape. It exposes a GetArea method. Imagine a Square class and a Rectangle class, and a Circle class. Instead of creating separate GetSquareArea, GetRectangleArea and GetCircleArea methods, you get to implement just one method in each of the derived classes. You don't have to know which exact subclass of Shape you use, you just call GetArea and you get your result, independent of which concrete type is it.
Have a look at this code:
#include <iostream>
using namespace std;
class Shape
{
public:
virtual float GetArea() = 0;
};
class Rectangle : public Shape
{
public:
Rectangle(float a) { this->a = a; }
float GetArea() { return a * a; }
private:
float a;
};
class Circle : public Shape
{
public:
Circle(float r) { this->r = r; }
float GetArea() { return 3.14f * r * r; }
private:
float r;
};
int main()
{
Shape *a = new Circle(1.0f);
Shape *b = new Rectangle(1.0f);
cout << a->GetArea() << endl;
cout << b->GetArea() << endl;
}
An important thing to notice here is - you don't have to know the exact type of the class you're using, just the base type, and you will get the right result. This is very useful in more complex systems as well.
Have fun learning!
Have you ever added two integers with +, and then later added an integer to a floating-point number with +?
Have you ever logged x.toString() to help you debug something?
I think you probably already appreciate polymorphism, just without knowing the name.
In a strictly typed language, polymorphism is important in order to have a list/collection/array of objects of different types. This is because lists/arrays are themselves typed to contain only objects of the correct type.
Imagine for example we have the following:
// the following is pseudocode M'kay:
class apple;
class banana;
class kitchenKnife;
apple foo;
banana bar;
kitchenKnife bat;
apple *shoppingList = [foo, bar, bat]; // this is illegal because bar and bat is
// not of type apple.
To solve this:
class groceries;
class apple inherits groceries;
class banana inherits groceries;
class kitchenKnife inherits groceries;
apple foo;
banana bar;
kitchenKnife bat;
groceries *shoppingList = [foo, bar, bat]; // this is OK
Also it makes processing the list of items more straightforward. Say for example all groceries implements the method price(), processing this is easy:
int total = 0;
foreach (item in shoppingList) {
total += item.price();
}
These two features are the core of what polymorphism does.
Advantage of polymorphism is client code doesn't need to care about the actual implementation of a method.
Take look at the following example.
Here CarBuilder doesn't know anything about ProduceCar().Once it is given a list of cars (CarsToProduceList) it will produce all the necessary cars accordingly.
class CarBase
{
public virtual void ProduceCar()
{
Console.WriteLine("don't know how to produce");
}
}
class CarToyota : CarBase
{
public override void ProduceCar()
{
Console.WriteLine("Producing Toyota Car ");
}
}
class CarBmw : CarBase
{
public override void ProduceCar()
{
Console.WriteLine("Producing Bmw Car");
}
}
class CarUnknown : CarBase { }
class CarBuilder
{
public List<CarBase> CarsToProduceList { get; set; }
public void ProduceCars()
{
if (null != CarsToProduceList)
{
foreach (CarBase car in CarsToProduceList)
{
car.ProduceCar();// doesn't know how to produce
}
}
}
}
class Program
{
static void Main(string[] args)
{
CarBuilder carbuilder = new CarBuilder();
carbuilder.CarsToProduceList = new List<CarBase>() { new CarBmw(), new CarToyota(), new CarUnknown() };
carbuilder.ProduceCars();
}
}
Polymorphism is the foundation of Object Oriented Programming. It means that one object can be have as another project. So how does on object can become other, its possible through following
Inheritance
Overriding/Implementing parent Class behavior
Runtime Object binding
One of the main advantage of it is switch implementations. Lets say you are coding an application which needs to talk to a database. And you happen to define a class which does this database operation for you and its expected to do certain operations such as Add, Delete, Modify. You know that database can be implemented in many ways, it could be talking to file system or a RDBM server such as MySQL etc. So you as programmer, would define an interface that you could use, such as...
public interface DBOperation {
public void addEmployee(Employee newEmployee);
public void modifyEmployee(int id, Employee newInfo);
public void deleteEmployee(int id);
}
Now you may have multiple implementations, lets say we have one for RDBMS and other for direct file-system
public class DBOperation_RDBMS implements DBOperation
// implements DBOperation above stating that you intend to implement all
// methods in DBOperation
public void addEmployee(Employee newEmployee) {
// here I would get JDBC (Java's Interface to RDBMS) handle
// add an entry into database table.
}
public void modifyEmployee(int id, Employee newInfo) {
// here I use JDBC handle to modify employee, and id to index to employee
}
public void deleteEmployee(int id) {
// here I would use JDBC handle to delete an entry
}
}
Lets have File System database implementation
public class DBOperation_FileSystem implements DBOperation
public void addEmployee(Employee newEmployee) {
// here I would Create a file and add a Employee record in to it
}
public void modifyEmployee(int id, Employee newInfo) {
// here I would open file, search for record and change values
}
public void deleteEmployee(int id) {
// here I search entry by id, and delete the record
}
}
Lets see how main can switch between the two
public class Main {
public static void main(String[] args) throws Exception {
Employee emp = new Employee();
... set employee information
DBOperation dboper = null;
// declare your db operation object, not there is no instance
// associated with it
if(args[0].equals("use_rdbms")) {
dboper = new DBOperation_RDBMS();
// here conditionally, i.e when first argument to program is
// use_rdbms, we instantiate RDBM implementation and associate
// with variable dboper, which delcared as DBOperation.
// this is where runtime binding of polymorphism kicks in
// JVM is allowing this assignment because DBOperation_RDBMS
// has a "is a" relationship with DBOperation.
} else if(args[0].equals("use_fs")) {
dboper = new DBOperation_FileSystem();
// similarly here conditionally we assign a different instance.
} else {
throw new RuntimeException("Dont know which implemnation to use");
}
dboper.addEmployee(emp);
// now dboper is refering to one of the implementation
// based on the if conditions above
// by this point JVM knows dboper variable is associated with
// 'a' implemenation, and it will call appropriate method
}
}
You can use polymorphism concept in many places, one praticle example would be: lets you are writing image decorer, and you need to support the whole bunch of images such as jpg, tif, png etc. So your application will define an interface and work on it directly. And you would have some runtime binding of various implementations for each of jpg, tif, pgn etc.
One other important use is, if you are using java, most of the time you would work on List interface, so that you can use ArrayList today or some other interface as your application grows or its needs change.
Polymorphism allows you to write code that uses objects. You can then later create new classes that your existing code can use with no modification.
For example, suppose you have a function Lib2Groc(vehicle) that directs a vehicle from the library to the grocery store. It needs to tell vehicles to turn left, so it can call TurnLeft() on the vehicle object among other things. Then if someone later invents a new vehicle, like a hovercraft, it can be used by Lib2Groc with no modification.
I guess sometimes objects are dynamically called. You are not sure whether the object would be a triangle, square etc in a classic shape poly. example.
So, to leave all such things behind, we just call the function of derived class and assume the one of the dynamic class will be called.
You wouldn't care if its a sqaure, triangle or rectangle. You just care about the area. Hence the getArea method will be called depending upon the dynamic object passed.
One of the most significant benefit that you get from polymorphic operations is ability to expand.
You can use same operations and not changing existing interfaces and implementations only because you faced necessity for some new stuff.
All that we want from polymorphism - is simplify our design decision and make our design more extensible and elegant.
You should also draw attention to Open-Closed Principle (http://en.wikipedia.org/wiki/Open/closed_principle) and for SOLID (http://en.wikipedia.org/wiki/Solid_%28Object_Oriented_Design%29) that can help you to understand key OO principles.
P.S. I think you are talking about "Dynamic polymorphism" (http://en.wikipedia.org/wiki/Dynamic_polymorphism), because there are such thing like "Static polymorphism" (http://en.wikipedia.org/wiki/Template_metaprogramming#Static_polymorphism).
You don't need polymorphism.
Until you do.
Then its friggen awesome.
Simple answer that you'll deal with lots of times:
Somebody needs to go through a collection of stuff. Let's say they ask for a collection of type MySpecializedCollectionOfAwesome. But you've been dealing with your instances of Awesome as List. So, now, you're going to have to create an instance of MSCOA and fill it with every instance of Awesome you have in your List<T>. Big pain in the butt, right?
Well, if they asked for an IEnumerable<Awesome>, you could hand them one of MANY collections of Awesome. You could hand them an array (Awesome[]) or a List (List<Awesome>) or an observable collection of Awesome or ANYTHING ELSE you keep your Awesome in that implements IEnumerable<T>.
The power of polymorphism lets you be type safe, yet be flexible enough that you can use an instance many many different ways without creating tons of code that specifically handles this type or that type.
Tabbed Applications
A good application to me is generic buttons (for all tabs) within a tabbed-application - even the browser we are using it is implementing Polymorphism as it doesn't know the tab we are using at the compile-time (within the code in other words). Its always determined at the Run-time (right now! when we are using the browser.)