Is it possible to create custom byte in .net - vb.net

I am creating a WCF in vb.net inside VS 2010. I have a handful of properties that are currently bytes (0 - 255) and represent different test scores. Is it possible for me to create my own type based on this that will only allow values between 0 and 110? For example, if I have
Dim a as Byte
a = 256
I will get "Constant expression not representable in type 'Byte'." before the code is compiled. I want to have something like this for my own type so the below code would give me "Constant expression not representable in type 'myByte'."
Dim a as myByte
a = 110

You can only use predefined (native) types, as Byte, and implement some features, like overloading operators to check minimum and maximum values. However, not every operator can be overloaded, what, in this case, includes the assignement operator '='.
Check http://msdn.microsoft.com/en-us/library/8edha89s%28v=vs.71%29.aspx and the tutorials if it helps somewhat.
To assign a value tp your type you can make use of properties or methods that set the value checking for boudaries and other conditions, perfectly doable.
But to define it as a native... negative, sir.

Nope, I don't think that's possible. You'll have to use a constructor to initialize your myByte instance and do the range check at runtime (not sure how useful that would be).

Related

SonarLint - questions about some of the rules for VB.NET

The large majority of SonarLint rules that I've come across in Java seemed plausible and justified. However, ever since I've started using SonarLint for VB.NET, I've come across several rules that left me questioning their usefulness or even whether or not they are working correctly.
I'd like to know if this is simply a problem of me using some VB.NET constructs in a suboptimal way or whether the rule really is flawed.
(Apologies if this question is a little longer. I didn't know if I should create a separate question for each individual rule.)
The following rules I found to leave some cases unconsidered that would actually turn up as false-positives:
S1871: Two branches in the same conditional structure should not have exactly the same implementation
I found this one to bring up a lot of false-positives for me, because sometimes the order in which the conditions are checked actually does matter. Take the following pseudo code as example:
If conditionA() Then
doSomething()
ElseIf conditionB() AndAlso conditionC() Then
doSomethingElse()
ElseIf conditionD() OrElse conditionE() Then
doYetAnotherThing()
'... feel free to have even more cases in between here
Else Then
doSomething() 'Non-compliant
End If
If I wanted to follow this Sonar rule and still make the code behave the same way, I'd have to add the negated version of each ElseIf-condition to the first If-condition.
Another example would be the following switch:
Select Case i
Case 0 To 40
value = 0
Case 41 To 60
value = 1
Case 61 To 80
value = 3
Case 81 To 100
value = 5
Case Else
value = 0 'Non-compliant
There shouldn't be anything wrong with having that last case in a switch. True, I could have initialized value beforehand to 0 and ignored that last case, but then I'd have one more assignment operation than necessary. And the Java ruleset has conditioned me to always put a default case in every switch.
S1764: Identical expressions should not be used on both sides of a binary operator
This rule does not seem to take into account that some functions may return different values every time you call them, for instance collections where accessing an element removes it from the collection:
stack.Push(stack.Pop() / stack.Pop()) 'Non-compliant
I understand if this is too much of an edge case to make special exceptions for it, though.
The following rules I am not actually sure about:
S3385: "Exit" statements should not be used
While I agree that Return is more readable than Exit Sub, is it really bad to use a single Exit For to break out of a For or a For Each loop? The SonarLint rule for Java permits the use of a single break; in a loop before flagging it as an issue. Is there a reason why the default in VB.NET is more strict in that regard? Or is the rule built on the assumption that you can solve nearly all your loop problems with LINQ extension methods and lambdas?
S2374: Signed types should be preferred to unsigned ones
This rule basically states that unsigned types should not be used at all because they "have different arithmetic operators than signed ones - operators that few developers understand". In my code I am only using UInteger for ID values (because I don't need negative values and a Long would be a waste of memory in my case). They are stored in List(Of UInteger) and only ever compared to other UIntegers. Is this rule even relevant to my case (are comparisons part of these "arithmetic operators" mentioned by the rule) and what exactly would be the pitfall? And if not, wouldn't it be better to make that rule apply to arithmetic operations involving unsigned types, rather than their declaration?
S2355: Array literals should be used instead of array creation expressions
Maybe I don't know VB.NET well enough, but how exactly would I satisfy this rule in the following case where I want to create a fixed-size array where the initialization length is only known at runtime? Is this a false-positive?
Dim myObjects As Object() = New Object(someOtherList.Count - 3) {} 'Non-compliant
Sure, I could probably just use a List(Of Object). But I am curious anyway.
Thanks for raising these points. Note that not all rules apply every time. There are cases when we need to balance between false positives/false negatives/real cases. For example with identical expressions on both sides of an operator rule. Is it a bug to have the same operands? No it's not. If it was, then the compiler would report it. Is it a bad smell, is it usually a mistake? Yes in many cases. See this for example in Roslyn. Should we tune this rule to exclude some cases? Yes we should, there's nothing wrong with 2 << 2. So there's a lot of balancing that needs to happen, and we try to settle for an implementation that brings the most value for the users.
For the points you raised:
Two branches in the same conditional structure should not have exactly the same implementation
This rule generally states that having two blocks of code match exactly is a bad sign. Copy-pasted code should be avoided for many reasons, for example if you need to fix the code in one place, you'll need to fix it in the other too. You're right that adding negated conditions would be a mess, but if you extract each condition into its own method (and call the negated methods inside them) with proper names, then it would probably improves the readability of your code.
For the Select Case, again, copy pasted code is always a bad sign. In this case you could do this:
Select Case i
...
Case 0 To 40
Case Else
value = 0 ' Compliant
End Select
Or simply remove the 0-40 case.
Identical expressions should not be used on both sides of a binary operator
I think this is a corner case. See the first paragraph of the answer.
"Exit" statements should not be used
It's almost always true that by choosing another type of loop, or changing the stop condition, you can get away without using any "Exit" statements. It's good practice to have a single exit point from loops.
Signed types should be preferred to unsigned ones
This is a legacy rule from SonarQube VB.NET, and I agree with you that it shouldn't be enabled by default in SonarLint. I created the following ticket in our JIRA: https://jira.sonarsource.com/browse/SLVS-1074
Array literals should be used instead of array creation expressions
Yes, it seems to be a false positive, we shouldn't report on array creations when the size is explicitly specified. https://jira.sonarsource.com/browse/SLVS-1075

Cleanest way to convert a `Double` or `Single` to `Integer`, without rounding

Converting a floating-point number to an integer using either CInt or CType will cause the value of that number to be rounded. The Int function and Math.Floor may be used to convert a floating-point number to a whole number, rounding toward negative infinity, but both functions return floating-point values which cannot be implicitly used as Integer values without a cast.
Is there a concise and idiomatic alternative to IntVar = CInt(Int(FloatingPointVar));? Pascal included Round and Trunc functions which returned Integer; is there some equivalent in either the VB.NET language or in the .NET framework?
A similar question, CInt does not round Double value consistently - how can I remove the fractional part? was asked in 2011, but it simply asked if there was a way to convert a floating-point number to an integer; the answers suggested a two-step process, but it didn't go into any depth about what does or does not exist in the framework. I would find it hard to believe that the Framework wouldn't have something analogous to the Pascal Trunc function, given that such a thing will frequently be needed when performing graphical operations using floating-point operands [such operations need to be rendered as discrete pixels, and should be rounded in such a way that round(x)-1 = round(x-1) for all x that fit within the range of +/- (2^31-1); even if such operations are rounded, they should use Floor(x+0.5), rather than round-to-nearest-even, so as to ensure the above property]
Incidentally, in C# a typecast from Double to Int using (type)expr notation uses round-to-zero semantics; the fact that this differs from the VB.NET behavior suggests that one or both languages is using its own conversion routines rather an explicit conversion operator included in the Framework. It would seem likely that the Framework should define a conversion operator? Does such an operator exist within the framework? What does it do? Is there a way to invoke it from C# and/or VB.NET?
After some searching, it seems that VB has no clean way of accomplishing that, short of writing an extension method.
The C# (int) cast translates directly into conv.i4 in IL. VB has no such operators, and no framework function seems to provide an alternative.
Usenet had an interesting discussion about this back in 2005 – of course a lot has changed since then but I think this still holds.
You can use the Math.Truncate method.
Calculates the integral part of a specified double-precision floating-point number.
For example:
Dim a As double = 1.6666666
Dim b As Integer = Math.Truncate(a) ' b = 1
I know this is an old case but I saw no one suggest the Math.Round() function.
Yes Math.Round takes a double and returns a double. However it returns a number that has been rounded to a whole number. It should easily and concisely convert to an integer using cInt. Would that suffice?
cInt(math.round(10000.54564)) ' = 10001
cInt(math.round(10000.49564)) ' = 10000
You may need extract the Int part of a float number:
float num = 12.234;
string toint = "" + num;
string auxil = toint.Split('.');
int newnum = Int.Parse(auxil[0]);

Enumerating Strings as bytes?

I was looking for a way to enumerate String types in (vb).NET, but .NET enums only accept numeric type values.
The first alternative I came across was to create a dictionary of my enum values and the string I want to return. This worked, but was hard to maintain because if you changed the enum you would have to remember to also change the dictionary.
The second alternative was to set field attributes on each enum member, and retrieve it using reflection. Surely enough this worked aswell and also solved the maintenance problem, but it uses reflection and I've always read that using reflection should be a last resort thing.
So I started thinking and I came up with this: every ASCII character can be represented as a hexadecimal value, and you can assign hexadecimal values to enum members.
You could get rid of the attributes, assign the hexadecimal values to the enum members. Then, when you need the text value, convert the value to a byte array and use System.Text.Encodings.ASCII.GetString(enumMemberBytes) to get the string value.
Now speaking out of experience, anything I come up with is usually either flawed or just plain wrong. What do you guys think about this approach? Is there any reason not to do it like that?
Thanks.
EDIT
As pointed out by David W, enum member values are limited in length, depending on the underlying type (integer by default). So yes, I believe my method works but you are limited to characters in the ASCII table, with a maximum length of 4 or 8 characters using integers or longs respectively.
The easiest way I have found to dynamically parse a String representation of an Enumeration into the actual Enumeration type was to do the following:
Private EnumObject
[Undefined]
ValueA
ValueB
End Enum
dim enumVal as EnumObject = DirectCast([Enum].Parse(GetType(EnumObject), "ValueA"), EnumObject)
This removes the need to maintain a dictionary and allows you to just handle strings instead of converting to an Int or a Long. This does use reflection, but I have not come across any issues as long as you catch and handle any exceptions with the String Parse.

When is it necessary to convert data types in Visual Basic 2010

Visual Basic 2010 (Express). I can best give this by example...
If I take a string from a textbox and assign it to an integer variable, I'm under the impression that you're supposed to use CInt to explicitly convert the contents to an integer.
intMyCount = CInt(txtUserInput.Text)
However, if I don't do that, it still seems to work. Similarly, if I have an integer and concatenate it into a label's text property, it still works:
lblResults.Text = intMyCount & " number of times."
rather than using intMyCount.ToString.
Why does it work? Is VB doing implicit conversions when possible? Are there examples where not explicitly converting with .ToString or using CInt would cause unexpected results?
This is done using late-binding, and it's dangerous because if the conversion ever fails (and there's lots of cases where your first example could fail) it ends up in an exception at runtime. To get the compiler to enforce safer casting, turn Option Strict On.
Additionally, most of the time you don't want to use CInt() to convert your string to int. Instead, prefer Integer.Parse() or Integer.TryParse().
Some languages handle string concatenation easily like this for the non-casting to string. Some also handle non-casting to numeric types to do calculations. Some languages don't handle it at all. However as a best-practice, I would always cast the variable to the type you want to avoid issues with improper input types.

can a variable have multiple values

In algebra if I make the statement x + y = 3, the variables I used will hold the values either 2 and 1 or 1 and 2. I know that assignment in programming is not the same thing, but I got to wondering. If I wanted to represent the value of, say, a quantumly weird particle, I would want my variable to have two values at the same time and to have it resolve into one or the other later. Or maybe I'm just dreaming?
Is it possible to say something like i = 3 or 2;?
This is one of the features planned for Perl 6 (junctions), with syntax that should look like my $a = 1|2|3;
If ever implemented, it would work intuitively, like $a==1 being true at the same time as $a==2. Also, for example, $a+1 would give you a value of 2|3|4.
This feature is actually available in Perl5 as well through Perl6::Junction and Quantum::Superpositions modules, but without the syntax sugar (through 'functions' all and any).
At least for comparison (b < any(1,2,3)) it was also available in Microsoft Cω experimental language, however it was not documented anywhere (I just tried it when I was looking at Cω and it just worked).
You can't do this with native types, but there's nothing stopping you from creating a variable object (presuming you are using an OO language) which has a range of values or even a probability density function rather than an actual value.
You will also need to define all the mathematical operators between your variables and your variables and native scalars. Same goes for the equality and assignment operators.
numpy arrays do something similar for vectors and matrices.
That's also the kind of thing you can do in Prolog. You define rules that constraint your variables and then let Prolog resolve them ...
It takes some time to get used to it, but it is wonderful for certain problems once you know how to use it ...
Damien Conways Quantum::Superpositions might do what you want,
https://metacpan.org/pod/Quantum::Superpositions
You might need your crack-pipe however.
What you're asking seems to be how to implement a Fuzzy Logic system. These have been around for some time and you can undoubtedly pick up a library for the common programming languages quite easily.
You could use a struct and handle the operations manualy. Otherwise, no a variable only has 1 value at a time.
A variable is nothing more than an address into memory. That means a variable describes exactly one place in memory (length depending on the type). So as long as we have no "quantum memory" (and we dont have it, and it doesnt look like we will have it in near future), the answer is a NO.
If you want to program and to modell this behaviour, your way would be to use a an array (with length equal to the number of max. multiple values). With this comes the increased runtime, hence the computations must be done on each of the values (e.g. x+y, must compute with 2 different values x1+y1, x2+y2, x1+y2 and x2+y1).
In Perl , you can .
If you use Scalar::Util , you can have a var take 2 values . One if it's used in string context , and another if it's used in a numerical context .