How to exclude numbers in arc4random? - objective-c

I am using arc4random to generate a random number. I would like to generate a number between 1-9. How can I exclude 0?
int r = arc4random() % (9);
NSLog(#"Random Number: %d",r);

int r = (arc4random() % 8) + 1

You can use arc4random_uniform(), as in
arc4random_uniform(9) + 1
Generally, to generate a number between lo and hi (inclusive), you use:
arc4random_uniform(hi - lo + 1) + lo
If you don't want to use arc4random_uniform() and want to stick with arc4random(), noting that the resulting value from using modulus formula is not uniformly distributed, use
(arc4random() % (hi - lo + 1)) + lo

int r = arc4random() % 8 + 1;
See other answers (e.g., one from me) for why you probably don't want to use % for this task, and what you should use instead.

You could simply try repeatedly until you get a number in the range you want, throwing out numbers you don't want. This has the fancy name "acceptance-rejection method" in math. It's simple, and it works.
In case you're worried that this could take a long time, in theory it could. But this approach is used all the time in statistical applications. The probability of going through a while-loop N times decreases rapidly as N increases, so the average number of times through the loop is small.

Related

Problem determining the bit length of a key from the modulus in the RSA algorithm

Here are two 64-bit (signed) integers
p = 13776308150928489016
q = 16488138731131959619
and their product
n = 112488352363349635896748360565917156710
The bit-length of the product is floor ((log2 n) + 1) or 127.
Now here are another two 64-bit integers
p = 13275629912622491628
q = 16290498985329101221
and their product
n = 179030914337714357408535416678431567970
but this time the bit length is floor ((log2 n) + 1) or 128.
The reason is that there's a leading zero in the first integer, which makes the space needed to represent the integer in memory one bit smaller.
The problem this causes is that I can't determine the bit length of the keys accurately. For example, here are is a very short RSA key pair:
Public key : 7, 8371846783263706079
Private key : 2989945277626202443, 8371846783263706079
The modulus (8371846783263706079) is 63 bits, which the number I'm after is 64. The overcome this issue I have considered the following solutions:
Round up to the nearest 2^n
Store the key size in bits along with the key
Add some kind of padding to ensure all integers take up the same space (not sure how this would work in practice)
Which one is the correct solution?
As #r3mainer notes, the math needed here -- inequalities -- is not exotic. As to what tutorials say, well, they're just tutorials, they're trying to simplify as much as possible so they leave out some details.
What you are observing is the following:
you want two primes, p and q, to have the same bit length k and their product N to have a bit length of 2k.
By the definition of what it means to have a bit length of k, we have the following inequality:
1) 2(k-1) <= p, q < 2k.
However, when we multiply p and q we discover a problem:
2) 2(2k - 2) <= N < 22k
This means that N=p*q may end up having bit length of 2k-1 or 2k, but we don't want 2k-1.
In your example k=64.
To fix it, we need to tighten up the lower bound on p and q to the following:
3) sqrt(2(2k-1)) <= p, q < 2k.
Bearing in mind that all results are integers, we apply the ceiling function and get finally
4) ceiling(sqrt(2(2k-1))) <= p, q < 2k.
For k=64 this works out to:
13043817825332782213 <= p, q < 264
An even simpler formulation is make the bounds dynamic, as in the following:
first find p, of any size. Then we want
2(2k - 1) <= p*q < 22k, so
5) (2(2k - 1))/ p <= q < (22k)/p will do the trick.
For RSA, we actually do want both primes to be sufficiently large and entropic, and yet not be too close to each other. We can do that by choosing p to have length k-1 or k-2 and applying 5).

Make sure that random() does not return 0?

I'm looking at the documentation for random():
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man3/srandomdev.3.html#//apple_ref/c/func/random
It returns successive pseudo-random numbers in the range from 0 to (2**31)-1.
I don't want it to return 0 ever.
I'm thinking about writing:
long rand = random() + 1;
But if I'm not mistaken, long can be 32-bits on a 32-bit processor. I guess I would risk stack overflow then.
What is the best approach to getting a random number between 1 and (2**31)-1?
NSUInteger r = arc4random_uniform(N) + 1;
This will generate a number between 1 and N. arc4random_uniform(N) generates a number between 0 and N-1.
You should have no problem with overflow.
long rand = 0;
while (rand == 0) {
rand = random();
}
This will almost absolutely certainly run exactly once. In a very, very rare case (that will never happen), it will run twice.
(Note that this is just a simplified version of how arc4random_uniform works. If you can use that function, as suggested by Jeff, you should.)
The maximum value returned by random() is RAND_MAX, so you can do this:
long rand = 1 + (random() % RAND_MAX);
When random() returns a value between zero and RAND_MAX-1, inclusive, you offset it by adding 1. When random() returns exactly RAND_MAX, modulo operator % converts the result to zero, so rand would be 1 again.
The drawback of this approach is that the probability of getting 1 becomes roughly twice as high as that of getting any other number.

Which one is the correct way of using "arc4rand()"

I am new to objective C and trying to understand arc4random().
There are so many conflicting explanations on the web. Please clear my confusion, which of the following is correct:
// 1.
arc4random() % (toNumber - fromNumber) + fromNumber;
OR
//2.
arc4random() % ((toNumber - fromNumber) + 1) + fromNumber;
//toNumber-fromNumbers are any range of numbers like random # between 7-90.
This code will get you a random number between 7 and 90.
NSUInteger random = 7 + arc4random_uniform(90 - 7);
Use arc4random_uniform to avoid modulo bias.
Adam's answer is correct. However, just to clarify the difference between the two, the second one raises the possible range by one to make the range inclusive. The important thing to remember is that modulo is remainder division, so while there are toNumber possible outcomes, one of them is zero (if the result of arc4random() is a multiple of toNumber) and toNumber itself can not be the remainder.
// 1.
arc4random() % (10 - 5) + 5;
This results in a range of 0 + 5 to 4 + 5, which is 5 to 9.
//2.
arc4random() % ((10 - 5) + 1) + 5;
This results in a range of 0 + 5 to (4 + 1) + 5, which is 5 to 10.
Neither is correct or incorrect if you wish to use modulo. One is exclusive of the upper range while the other is inclusive of the upper range. However, if you think about how remainder division works and think of the pool of numbers returned by any PRNG in terms of cycles the length of your total range, then you'll realize that if the range does not divide evenly into the maximum range of the pool you'll get biased results. For instance, if arc4random() returned a result from 1 to 5 (it doesn't, obviously) and you wanted a number from 0 to 2, and you used arc4random() % 3, these are the possible results.
1 % 3 = 1
2 % 3 = 2
3 % 3 = 0
4 % 3 = 1
5 % 3 = 2
Note that there are two ones and two twos, but only one zero. This is because our range of 3 does not evenly divide into the PRNG's range of 5. The result is that (humorously enough) PRNG range % desired range numbers at the end of the cycle need to be culled because they are "biased"–the numbers themselves aren't really biased, but it's easier to cull from the end. Failing to do this results in the lower numbers of the range becoming more likely to appear.
We can cull the numbers by calculating the upper range of the numbers we can generate, modulo it with the desired range and then pull those numbers off of the end. By "pull those numbers off of the end" I really mean "loop infinitely until we get a number that isn't one of the end numbers".
Some would say that's bad practice; you could theoretically loop forever. In practice, however, the expected number of retries is always less than one since the modulo bias is never more than half the pool (usually much less than that) of the PRNG's numbers. I once wrote a wrapper for rand using this technique.
You can see an example of this in the source for OpenBSD, where arc4random_uniform calls arc4random in a loop until a number is determined to be clean.

Recognizing when to use the modulus operator

I know the modulus (%) operator calculates the remainder of a division. How can I identify a situation where I would need to use the modulus operator?
I know I can use the modulus operator to see whether a number is even or odd and prime or composite, but that's about it. I don't often think in terms of remainders. I'm sure the modulus operator is useful, and I would like to learn to take advantage of it.
I just have problems identifying where the modulus operator is applicable. In various programming situations, it is difficult for me to see a problem and realize "Hey! The remainder of division would work here!".
Imagine that you have an elapsed time in seconds and you want to convert this to hours, minutes, and seconds:
h = s / 3600;
m = (s / 60) % 60;
s = s % 60;
0 % 3 = 0;
1 % 3 = 1;
2 % 3 = 2;
3 % 3 = 0;
Did you see what it did? At the last step it went back to zero. This could be used in situations like:
To check if N is divisible by M (for example, odd or even)
or
N is a multiple of M.
To put a cap of a particular value. In this case 3.
To get the last M digits of a number -> N % (10^M).
I use it for progress bars and the like that mark progress through a big loop. The progress is only reported every nth time through the loop, or when count%n == 0.
I've used it when restricting a number to a certain multiple:
temp = x - (x % 10); //Restrict x to being a multiple of 10
Wrapping values (like a clock).
Provide finite fields to symmetric key algorithms.
Bitwise operations.
And so on.
One use case I saw recently was when you need to reverse a number. So that 123456 becomes 654321 for example.
int number = 123456;
int reversed = 0;
while ( number > 0 ) {
# The modulus here retrieves the last digit in the specified number
# In the first iteration of this loop it's going to be 6, then 5, ...
# We are multiplying reversed by 10 first, to move the number one decimal place to the left.
# For example, if we are at the second iteration of this loop,
# reversed gonna be 6, so 6 * 10 + 12345 % 10 => 60 + 5
reversed = reversed * 10 + number % 10;
number = number / 10;
}
Example. You have message of X bytes, but in your protocol maximum size is Y and Y < X. Try to write small app that splits message into packets and you will run into mod :)
There are many instances where it is useful.
If you need to restrict a number to be within a certain range you can use mod. For example, to generate a random number between 0 and 99 you might say:
num = MyRandFunction() % 100;
Any time you have division and want to express the remainder other than in decimal, the mod operator is appropriate. Things that come to mind are generally when you want to do something human-readable with the remainder. Listing how many items you could put into buckets and saying "5 left over" is good.
Also, if you're ever in a situation where you may be accruing rounding errors, modulo division is good. If you're dividing by 3 quite often, for example, you don't want to be passing .33333 around as the remainder. Passing the remainder and divisor (i.e. the fraction) is appropriate.
As #jweyrich says, wrapping values. I've found mod very handy when I have a finite list and I want to iterate over it in a loop - like a fixed list of colors for some UI elements, like chart series, where I want all the series to be different, to the extent possible, but when I've run out of colors, just to start over at the beginning. This can also be used with, say, patterns, so that the second time red comes around, it's dashed; the third time, dotted, etc. - but mod is just used to get red, green, blue, red, green, blue, forever.
Calculation of prime numbers
The modulo can be useful to convert and split total minutes to "hours and minutes":
hours = minutes / 60
minutes_left = minutes % 60
In the hours bit we need to strip the decimal portion and that will depend on the language you are using.
We can then rearrange the output accordingly.
Converting linear data structure to matrix structure:
where a is index of linear data, and b is number of items per row:
row = a/b
column = a mod b
Note above is simplified logic: a must be offset -1 before dividing & the result must be normalized +1.
Example: (3 rows of 4)
1 2 3 4
5 6 7 8
9 10 11 12
(7 - 1)/4 + 1 = 2
7 is in row 2
(7 - 1) mod 4 + 1 = 3
7 is in column 3
Another common use of modulus: hashing a number by place. Suppose you wanted to store year & month in a six digit number 195810. month = 195810 mod 100 all digits 3rd from right are divisible by 100 so the remainder is the 2 rightmost digits in this case the month is 10. To extract the year 195810 / 100 yields 1958.
Modulus is also very useful if for some crazy reason you need to do integer division and get a decimal out, and you can't convert the integer into a number that supports decimal division, or if you need to return a fraction instead of a decimal.
I'll be using % as the modulus operator
For example
2/4 = 0
where doing this
2/4 = 0 and 2 % 4 = 2
So you can be really crazy and let's say that you want to allow the user to input a numerator and a divisor, and then show them the result as a whole number, and then a fractional number.
whole Number = numerator/divisor
fractionNumerator = numerator % divisor
fractionDenominator = divisor
Another case where modulus division is useful is if you are increasing or decreasing a number and you want to contain the number to a certain range of number, but when you get to the top or bottom you don't want to just stop. You want to loop up to the bottom or top of the list respectively.
Imagine a function where you are looping through an array.
Function increase Or Decrease(variable As Integer) As Void
n = (n + variable) % (listString.maxIndex + 1)
Print listString[n]
End Function
The reason that it is n = (n + variable) % (listString.maxIndex + 1) is to allow for the max index to be accounted.
Those are just a few of the things that I have had to use modulus for in my programming of not just desktop applications, but in robotics and simulation environments.
Computing the greatest common divisor
Determining if a number is a palindrome
Determining if a number consists of only ...
Determining how many ... a number consists of...
My favorite use is for iteration.
Say you have a counter you are incrementing and want to then grab from a known list a corresponding items, but you only have n items to choose from and you want to repeat a cycle.
var indexFromB = (counter-1)%n+1;
Results (counter=indexFromB) given n=3:
`1=1`
`2=2`
`3=3`
`4=1`
`5=2`
`6=3`
...
Best use of modulus operator I have seen so for is to check if the Array we have is a rotated version of original array.
A = [1,2,3,4,5,6]
B = [5,6,1,2,3,4]
Now how to check if B is rotated version of A ?
Step 1: If A's length is not same as B's length then for sure its not a rotated version.
Step 2: Check the index of first element of A in B. Here first element of A is 1. And its index in B is 2(assuming your programming language has zero based index).
lets store that index in variable "Key"
Step 3: Now how to check that if B is rotated version of A how ??
This is where modulus function rocks :
for (int i = 0; i< A.length; i++)
{
// here modulus function would check the proper order. Key here is 2 which we recieved from Step 2
int j = [Key+i]%A.length;
if (A[i] != B[j])
{
return false;
}
}
return true;
It's an easy way to tell if a number is even or odd. Just do # mod 2, if it is 0 it is even, 1 it is odd.
Often, in a loop, you want to do something every k'th iteration, where k is 0 < k < n, assuming 0 is the start index and n is the length of the loop.
So, you'd do something like:
int k = 5;
int n = 50;
for(int i = 0;i < n;++i)
{
if(i % k == 0) // true at 0, 5, 10, 15..
{
// do something
}
}
Or, you want to keep something whitin a certain bound. Remember, when you take an arbitrary number mod something, it must produce a value between 0 and that number - 1.

Objective C - Random results is either 1 or -1

I am trying randomly generate a positive or negative number and rather then worry about the bigger range I am hoping to randomly generate either 1 or -1 to just multiply by my other random number.
I know this can be done with a longer rule of generating 0 or 1 and then checking return and using that to either multiply by 1 or -1.
Hoping someone knows of an easier way to just randomly set the sign on a number. Trying to keep my code as clean as possible.
I like to use arc4random() because it doesn't require you to seed the random number generator. It also conveniently returns a uint_32_t, so you don't have to worry about the result being between 0 and 1, etc. It'll just give you a random integer.
int myRandom() {
return (arc4random() % 2 ? 1 : -1);
}
If I understand the question correctly, you want a pseudorandom sequence of 1 and -1:
int f(void)
{
return random() & 1 ? 1 : -1;
// or...
// return 2 * (random() & 1) - 1;
// or...
// return ((random() & 1) << 1) - 1;
// or...
// return (random() & 2) - 1; // This one from Chris Lutz
}
Update: Ok, something has been bothering me since I wrote this. One of the frequent weaknesses of common RNGs is that the low order bits can go through short cycles. It's probably best to test a higher-order bit: random() & 0x80000 ? 1 : -1
To generate either 1 or -1 directly, you could do:
int PlusOrMinusOne() {
return (rand() % 2) * 2 - 1
}
But why are you worried about the broader range?
return ( ((arc4random() & 2) * 2) - 1 );
This extra step won't give you any additional "randomness". Just generate your number straight away in the range that you need (e.g. -10..10).
Standard rand() will return a value from this range: 0..1
You can multiply it by a constant to increase the span of the range or you can add a constant to push it left/right on the X-Axis.
E.g. to generate random values from from (-5..10) range you will have:
rand()*15-5
rand will give you a number from 0 to RAND_MAX which will cover every bit in an int except for the sign. By shifting that result left 1 bit you turn the signed MSB into the sign, but have zeroed-out the 0th bit, which you can repopulate with a random bit from another call to rand. The code will look something like:
int my_rand()
{
return (rand() << 1) + (rand() & 1);
}