Why do I get this error-message?
#!perl6
use v6;
my #a = 1..3;
my #b = 7..10;
my #c = 'a'..'d';
for zip(#a;#b;#c) -> $nth_a, $nth_b, $nth_c { ... };
# Output:
# ===SORRY!===
# Unable to parse postcircumfix:sym<( )>, couldn't find final ')' at line 9
Rakudo doesn't implement the lol ("list of lists") form yet, and so cannot parse #a;#b;#c. For the same reason, zip doesn't have a form which takes three lists yet. Clearly the error message is less than awesome.
There isn't really a good workaround yet, but here's something that will get the job done:
sub zip3(#a, #b, #c) {
my $a-list = flat(#a.list);
my $b-list = flat(#b.list);
my $c-list = flat(#c.list);
my ($a, $b, $c);
gather while ?$a-list && ?$b-list && ?$c-list {
$a = $a-list.shift unless $a-list[0] ~~ ::Whatever;
$b = $b-list.shift unless $b-list[0] ~~ ::Whatever;
$c = $c-list.shift unless $c-list[0] ~~ ::Whatever;
take ($a, $b, $c);
}
}
for zip3(#a,#b,#c) -> $nth_a, $nth_b, $nth_c {
say $nth_a ~ $nth_b ~ $nth_c;
}
The multi-dimensional syntax (the use of ; inside parens) and zip across more than two lists both work, so the code originally posted now works (if you provide some real code rather than the { ... } stub block).
Related
I was looking at REPL-like evaluation of code from here and here, and tried to make a very small version for it, yet it fails:
use nqp;
class E {
has Mu $.compiler;
has $!save_ctx;
method evaluate(#fragments) {
for #fragments -> $code {
my $*MAIN_CTX;
my $*CTXSAVE := self;
$!compiler.eval($code,
outer_ctx => nqp::ctxcaller(nqp::ctx()));
if nqp::defined($*MAIN_CTX) {
$!save_ctx := $*MAIN_CTX;
}
}
}
method ctxsave(--> Nil) {
say "*in ctxsave*";
$*MAIN_CTX := nqp::ctxcaller(nqp::ctx());
$*CTXSAVE := 0;
}
}
my $e := E.new(compiler => nqp::getcomp("Raku"));
nqp::bindattr($e, E, '$!save_ctx', nqp::ctx());
$e.evaluate: ('say my #vals = 12, 3, 4;', 'say #vals.head');
I pieced together this from the above links without very much knowing what I'm doing :) When run, this happens:
*in ctxsave*
[12 3 4]
===SORRY!=== Error while compiling file.raku
Variable '#vals' is not declared. Did you mean '&val'?
file.raku:1
------> say ⏏#vals.head
with Rakudo v2022.04. First fragment was supposed to declare it (and prints it). Is it possible to do something like this, so it recognizes #vals as declared?
You can do it in pure Raku code, although depending on the not-exactly-official context parameter to EVAL.
# Let us use EVAL with user input
use MONKEY;
loop {
# The context starts out with a fresh environment
state $*REPL-CONTEXT = UNIT::;
# Get the next line of code to run.
my $next-code = prompt '> ';
# Evaluate it; note that exceptions with line numbers will be
# off by one, so may need fixups.
EVAL "\q'$*REPL-CONTEXT = ::;'\n$next-code", context => $*REPL-CONTEXT;
}
Trying it out:
$ raku simple-repl.raku
> my $x = 35;
> say $x;
35
> my $y = 7;
> say $x + $y;
42
In Ruby I can group together some lines of code like so with a begin block:
x = begin
puts "Hi!"
a = 2
b = 3
a + b
end
puts x # 5
it's immediately evaluated and its value is the last value of the block (a + b here) (Javascripters do a similar thing with IIFEs)
What are the ways to do this in Raku? Is there anything smoother than:
my $x = ({
say "Hi!";
my $a = 2;
my $b = 3;
$a + $b;
})();
say $x; # 5
Insert a do in front of the block. This tells Raku to:
Immediately do whatever follows the do on its right hand side;
Return the value to the do's left hand side:
my $x = do {
put "Hi!";
my $a = 2;
my $b = 3;
$a + $b;
}
That said, one rarely needs to use do.
Instead, there are many other IIFE forms in Raku that just work naturally without fuss. I'll mention just two because they're used extensively in Raku code:
with whatever { .foo } else { .bar }
You might think I'm being silly, but those are two IIFEs. They form lexical scopes, have parameter lists, bind from arguments, the works. Loads of Raku constructs work like that.
In the above case where I haven't written an explicit parameter list, this isn't obvious. The fact that .foo is called on whatever if whatever is defined, and .bar is called on it if it isn't, is both implicit and due to the particular IIFE calling behavior of with.
See also if, while, given, and many, many more.
What's going on becomes more obvious if you introduce an explicit parameter list with ->:
for whatever -> $a, $b { say $a + $b }
That iterates whatever, binding two consecutive elements from it to $a and $b, until whatever is empty. If it has an odd number of elements, one might write:
for whatever -> $a, $b? { say $a + $b }
And so on.
Bottom line: a huge number of occurrences of {...} in Raku are IIFEs, even if they don't look like it. But if they're immediately after an =, Raku defaults to assuming you want to assign the lambda rather than immediately executing it, so you need to insert a do in that particular case.
Welcome to Raku!
my $x = BEGIN {
say "Hi!";
my $a = 2;
my $b = 3;
$a + $b;
}
I guess the common ancestry of Raku and Ruby shows :-)
Also note that to create a constant, you can also use constant:
my constant $x = do {
say "Hi!";
my $a = 2;
my $b = 3;
$a + $b;
}
If you can have a single statement, you can leave off the braces:
my $x = BEGIN 2 + 3;
or:
my constant $x = 2 + 3;
Regarding blocks: if they are in sink context (similar to "void" context in some languages), then they will execute just like that:
{
say "Executing block";
}
No need to explicitely call it: it will be called for you :-)
I am writing a model Series class (kinda like the one in pandas) - and it should be both Positional and Associative.
class Series does Positional does Iterable does Associative {
has Array $.data is required;
has Array $.index;
### Construction ###
method TWEAK {
# sort out data-index dependencies
$!index = gather {
my $i = 0;
for |$!data -> $d {
take ( $!index[$i++] => $d )
}
}.Array
}
### Output ###
method Str {
$!index
}
### Role Support ###
# Positional role support
# viz. https://docs.raku.org/type/Positional
method of {
Mu
}
method elems {
$!data.elems
}
method AT-POS( $p ) {
$!data[$p]
}
method EXISTS-POS( $p ) {
0 <= $p < $!data.elems ?? True !! False
}
# Iterable role support
# viz. https://docs.raku.org/type/Iterable
method iterator {
$!data.iterator
}
method flat {
$!data.flat
}
method lazy {
$!data.lazy
}
method hyper {
$!data.hyper
}
# Associative role support
# viz. https://docs.raku.org/type/Associative
method keyof {
Str(Any)
}
method AT-KEY( $k ) {
for |$!index -> $p {
return $p.value if $p.key ~~ $k
}
}
method EXISTS-KEY( $k ) {
for |$!index -> $p {
return True if $p.key ~~ $k
}
}
#`[ solution attempt #1 does NOT get called
multi method infix(Hyper: Series, Int) is default {
die "I was called"
}
#]
}
my $s = Series.new(data => [rand xx 5], index => [<a b c d e>]);
say ~$s;
say $s[2];
say $s<b>;
So far pretty darn cool.
I can go dd $s.hyper and get this
HyperSeq.new(configuration => HyperConfiguration.new(batch => 64, degree => 1))
BUT (there had to be a but coming), I want to be able to do hyper math on my Series' elements, something like:
say $s >>+>> 2;
But that yields:
Ambiguous call to 'infix(Hyper: Dan::Series, Int)'; these signatures all match:
(Hyper: Associative:D \left, \right, *%_)
(Hyper: Positional:D \left, \right, *%_)
in block <unit> at ./synopsis-dan.raku line 63
How can I tell my class Series not to offer the Associative hyper candidate...?
Note: edited example to be a runnable MRE per #raiph's comment ... I have thus left in the minimum requirements for the 3 roles in play per docs.raku.org
After some experimentation (and new directions to consider from the very helpful comments to this SO along the way), I think I have found a solution:
drop the does Associative role from the class declaration like this:
class Series does Positional does Iterable {...}
BUT
leave the Associative role support methods in the body of the class:
# Associative role support
# viz. https://docs.raku.org/type/Associative
method keyof {
Str(Any)
}
method AT-KEY( $k ) {
for |$!index -> $p {
return $p.value if $p.key ~~ $k
}
}
method EXISTS-KEY( $k ) {
for |$!index -> $p {
return True if $p.key ~~ $k
}
}
This gives me the Positional and Associative accessors, and functional hyper math operators:
my $s = Series.new(data => [rand xx 5], index => [<a b c d e>]);
say ~$s; #([a => 0.6137271559776396 b => 0.7942959887386045 c => 0.5768018697817604 d => 0.8964323560788711 e => 0.025740150933493577] , dtype: Num)
say $s[2]; #0.7942959887386045
say $s<b>; #0.5768018697817604
say $s >>+>> 2; #(2.6137271559776396 2.7942959887386047 2.5768018697817605 2.896432356078871 2.0257401509334936)
While this feels a bit thin (and probably lacks the full set of Associative functions) I am fairly confident that the basic methods will give me slimmed down access like a hash from a key capability that I seek. And it no longer creates the ambiguous call.
This solution may be cheating a bit in that I know the level of compromise that I will accept ;-).
Take #1
First, an MRE with an emphasis on the M1:
class foo does Positional does Associative { method of {} }
sub infix:<baz> (\l,\r) { say 'baz' }
foo.new >>baz>> 42;
yields:
Ambiguous call to 'infix(Hyper: foo, Int)'; these signatures all match:
(Hyper: Associative:D \left, \right, *%_)
(Hyper: Positional:D \left, \right, *%_)
in block <unit> at ./synopsis-dan.raku line 63
The error message shows it's A) a call to a method named infix with an invocant matching Hyper, and B) there are two methods that potentially match that call.
Given that there's no class Hyper in your MRE, these methods and the Hyper class must be either built-ins or internal details that are leaking out.
A search of the doc finds no such class. So Hyper is undocumented Given that the doc has fairly broad coverage these days, this suggests Hyper is an internal detail. But regardless, it looks like you can't solve your problem using official/documented features.
Hopefully this bad news is still better than none.2
Take #2
Where's the fun in letting little details like "not an official feature" stop us doing what we want to do?
There's a core.c module named Hyper.pm6 in the Rakudo source repo.
A few seconds browsing that, and clicks on its History and Blame, and I can instantly see it really is time for me to conclude this SO answer, with a recommendation for your next move.
To wit, I suggest you start another SO, using this answer as its heart (but reversing my presentation order, ie starting by mentioning Hyper, and that it's not doc'd), and namechecking Liz (per Hyper's History/Blame), with a link back to your Q here as its background. I'm pretty sure that will get you a good answer, or at least an authoritative one.
Footnotes
1 I also tried this:
class foo does Positional does Associative { method of {} }
sub postfix:<bar>(\arg) { say 'bar' }
foo.new>>bar;
but that worked (displayed bar).
2 If you didn't get to my Take #1 conclusion yourself, perhaps that was was because your MRE wasn't very M? If you did arrive at the same point (cf "solution attempt #1 does NOT get called" in your MRE) then please read and, for future SOs, take to heart, the wisdom of "Explain ... any difficulties that have prevented you from solving it yourself".
I'm looking for a simpler solution.
I have a list of prefixes with corresponding suffixes and a list of roots.
my #prefixes = 'A'..'E';
my #suffixes = 'a'..'e';
my #roots = 1, 2;
I would like to make all the possible 'words': A1a, B1b...A2a...E2e.
my #words;
for #roots -> $r {
for #prefixes.kv -> $i, $p {
my $s = #suffixes[$i];
my $word = [~] $p, $r, $s;
#words.push: $word;
}
}
say #words; # [A1a B1b C1c D1d E1e A2a B2b C2c D2d E2e]
I suppose that it is possible to do it much easier using something like zip or cross, but can't figure out how...
My solution would be:
say #roots.map: |(#prefixes >>~>> * <<~<< #postfixes);
Create a WhateverCode for metaopping concatenation, slipping the result to get a Seq with only scalar values at the end.
A few more ways to write it:
say #roots X[&join] (#prefixes Z #suffixes);
say #roots.map({ |(#prefixes Z #suffixes)».join($_) });
say #roots.map({ (#prefixes X~ $_) Z~ #suffixes }).flat;
say (|#prefixes xx *) Z~ (#roots X~ #suffixes);
my #formats = (#prefixes Z #suffixes).flat.map(* ~ '%s' ~ *);
say #formats X[&sprintf] #roots;
(Note: This one prints them in a different order.)
say do for #roots -> $root {
|do for (#prefixes Z #suffixes) -> [$prefix, $suffix] {
$prefix ~ $root ~ $suffix
}
}
Infinite lazy lists are awesome!
> my #fibo = 0, 1, *+* ... *;
> say #fibo[1000];
43466557686937456435688527675040625802564660517371780402481729089536555417949051890403879840079255169295922593080322634775209689623239873322471161642996440906533187938298969649928516003704476137795166849228875
They automatically cache their values, which is handy ... most of the time.
But when working with huge Fibonacci numbers (example), this can cause memory issues.
Unfortunately, I can't figure out how to create a non-caching Fibonacci sequence. Anyone?
One major problem is you are storing it in an array, which of course keeps all of its values.
The next problem is a little more subtle, the dotty sequence generator syntax LIST, CODE ... END doesn't know how many of the previous values the CODE part is going to ask for, so it keeps all of them.
( It could look at the arity/count of the CODE, but it doesn't currently seem to from experiments at the REPL )
Then there is the problem that using &postcircumfix:<[ ]> on a Seq calls .cache on the assumption that you are going to ask for another value at some point.
( From looking at the source for Seq.AT-POS )
It's possible that a future implementation could be better at each of these drawbacks.
You could create the sequence using a different feature to get around the current limitations of the dotty sequence generator syntax.
sub fibonacci-seq (){
gather {
take my $a = 0;
take my $b = 1;
loop {
take my $c = $a + $b;
$a = $b;
$b = $c;
}
}.lazy
}
If you are just iterating through the values you can just use it as is.
my $v;
for fibonacci-seq() {
if $_ > 1000 {
$v = $_;
last;
}
}
say $v;
my $count = 100000;
for fibonacci-seq() {
if $count-- <= 0 {
$v = $_;
last;
}
}
say chars $v; # 20899
You could also use the Iterator directly. Though this isn't necessary in most circumstances.
sub fibonacci ( UInt $n ) {
# have to get a new iterator each time this is called
my \iterator = fibonacci-seq().iterator;
for ^$n {
return Nil if iterator.pull-one =:= IterationEnd;
}
my \result = iterator.pull-one;
result =:= IterationEnd ?? Nil !! result
}
If you have a recent enough version of Rakudo you can use skip-at-least-pull-one.
sub fibonacci ( UInt $n ) {
# have to get a new iterator each time this is called
my \result = fibonacci-seq().iterator.skip-at-least-pull-one($n);
result =:= IterationEnd ?? Nil !! result
}
You can also implement the Iterator class directly, wrapping it in a Seq.
( this is largely how methods that return sequences are written in the Rakudo core )
sub fibonacci-seq2 () {
Seq.new:
class :: does Iterator {
has Int $!a = 0;
has Int $!b = 1;
method pull-one {
my $current = $!a;
my $c = $!a + $!b;
$!a = $!b;
$!b = $c;
$current;
}
# indicate that this should never be eagerly iterated
# which is recommended on infinite generators
method is-lazy ( --> True ) {}
}.new
}
Apparently, a noob cannot comment.
When defining a lazy iterator such as sub fibonacci-seq2, one should mark the iterator as lazy by adding a "is-lazy" method that returns True, e.g.:
method is-lazy(--> True) { }
This will allow the system to detect possible infiniloops better.