Basic virtualization questions - virtual-machine

Excuse me for my lack of knowledge but I am really new to the Virtual world and have a few questions.
I work for a small charity who specialise in providing basic IT training. We have recently acquired a few Dell Poweredge 2650 servers and Dell desktops and we wish to offer both XP, Windows 7, Mac and Ubuntu training. I am looking at setting up a Virtual environment so that we can have a standard image for each OS (I currently use image files but it currently takes approximately 25mins to build each machine and multi-boot is not an option as the new machines have 20Gb disks).
The servers are all dual processor and we can purchase more memory(I need to justify the cost)
What are the memory requirements for
the Host?
How many VM's can I run
per server?
Can I run multiple instances of the same VM
Thanks in advance for your knowledge.
Darryn

You might be able to get away with a multi-boot option with those 20 gig disks; each OS will probably take no more than ten gigs for minimal installs, two OSes per machine isn't terrible. (Incidentally, look around for a group like FreeGeek in your area -- larger hard drives ought to be cheap for small sizes like 120-500 gigs.)
That said, virtualization might be just what you need, if you have a handful of pretty powerful machines.
I think between one and two gigabytes of host memory for every guest VM that you want to run would be very useful. At least in my experience, an Ubuntu image I gave 1024 megabytes to ran very quickly, but I didn't press it very far. Running Firefox or OpenOffice inside the VM would probably dictate more memory very quickly. Chrome seemed snappy.
So, if you've got 12 gigabytes of RAM, you might be able to get between four and twenty virtual machines hosted on the machine simultaneously, depending upon what your guests are doing.
As for disk space, if you use QEMU's -snapshot option, you ought to be able to save disk space. Each user could boot the same underlying disk image, but their own modifications would go into the 'snapshot' file. (I have no experience trying to do long-term system maintenance with this option, so it could be that all twenty of your users need to store service pack 2 contents when they upgrade in the future; I'd be scared of trying to modify the shared disk image once you've got snapshots of it running. Perhaps having everyone store 'personal documents' and the like in CIFS shares would make a ton of sense.)
The biggest hurdle will probably be Mac; because the Apple terms of service forbid running OS X on non-Apple hardware, you'll have to have some Apple machines around to run VirtualBox.

Related

Multiseat setup for fun and profit: hypervisors and other choices

I am grad student, and I am considering setting up my dream home workstation/art tool/entertainment device/all-purpose everything. I'm wondering if what I want to do is possible (and practical), and if so, get some suggestions and warnings from people who know more about virtualization and hypervisors than I do:
Aim: Set up a 2-4 headed computing station that is optimized for using different OS'sfor different tasks I do. I want to keep my work/play streams separated, and have control over the resources that each one is allowed. For example, one head would be Windows 10 for audiovisual work, media playing, and maybe some gaming. Another head would use Linux and be used mainly for data science (mostly R and Python), and some hosting for purely local use (such as running an instance of the Galaxy bioinformatics server, which I only plan to access locally).Finally, I want a VM that is purely devoted to web-browsing, probably some lightweight Linux distro.
I want each OS to have it's own keyboard and monitor(s), but ideally I want to copy-paste between OSs. The idea is to just swivel my chair to move between operating systems, or even to have one person using each.
What I think I need:
A hypervisor with PCI, USB, and network controller pass-through.
Two video cards,one each for my Windows and Linux workstations (with the web browsing VM using the on-chip CPU graphics). Obviously, a mobo and CPU that support full virtualization.
A USB card with multiple separate controllers, so that I can use a different controller for each OS. Something similar for network interface cards.
Separate SSDs for each OS and its apps.
Some sort of storage pool (probably ZFS based) to hold the bulk of my files, shared so I can access them from either guest. Ideally, I'd like to to be in a separate enclosure, but I don't trust eSATA cables (they seem to fail frequently) and care about speed of database access, so I'll probably put the drives inside the main case, even though that will make future migration more annoying.
Something like SPICE for KVM, so that I can copy and paste freely between OS's.
Is there anything I am overlooking?
What hypervisor or similar solution is best for what I want to do? I am leaning towards KVM, but am far from committed.I will consider paid solutions if there is a compelling reason to use them.
What are some pitfalls I should be wary of?
kvm will work here ideally, a lot of tutorials and lot of intel based configurations working like a charm
zfs can't share your data, u need nfs or samba share on host machine
Synergy software is for you.

How to test applications and websites with less computing power?

Currently I develop on an extremely powerful machine: Pentium i7, 32 GB Ram, SSD, 1 Gb 1028-bit graphics card, etc.
What I'm trying to figure out is the proper way to test my applications and web pages simulating a less powerful computer. Is there any way to simulate a slower processor, less ram, slower hard drive, and weaker graphics card? I'm not sure if I missed anything else in terms of what else to simulate...
The only thing I've figured out so far is resolution, but that was as easy as changing my monitor resolution. Though, if there is a way to simulate less resolution without needing to change my actual screen resolution as well, that'd be great.
Download Windows Virtual PC.
And test you application in it. You can customize your configuration, everything like disk storage, ram memory etc.
Good application for application developers to test in different environments.
I suppose you could create a virtual machine on your computer. You could then vary how much RAM & processing power it has access to. You could boot this machine of a USB drive if you wanted to simulate a slower drive.

Carrying and Working on an Entire Development Box from a USB Stick. Feasible?

Lately I have been thinking about investing in a worthy USB pen drive (something along the lines of this), and install Operating Systems on Virtual Machines and start developing on them.
What I have in mind is that I want to be able to carry my development boxes, being a Windows Distribution for .Net development and a Linux Distribution for stuff like RoR, Perl and whatnot, so that I would be able to carry them around where need be...be it work, school, different computers at home etc...
I am thinking of doing this also for backup purposes...ie to backup my almost-single VM file to an external hd, instead of doing routinely updates to my normal Windows Box. I am also thinking about maybe even committing the VM boxes under Source Control (is that even feasible?)
So, am I on the right track with this ? Do you suggest that I try to implement this out?
How feasible is it to have your development box on Virtual Machine that runs from a USB Pen-Drive ?
I absolutely agree with where you are heading. I wish to do this myself.
But if you don't already know, it's not just about drive size, believe it or not USB Flash drives can be much slower than your spinning disk drives!
This can be a big problem if you plan to actually run the VMs directly from the USB drive!
I've tried running a 4GB Windows XP VM on a 32GB Corsair Survivor and the VM was virtually unusuable! Also copying my 4GB VM off and back onto the drive was also quite slow - about 10 minutes to copy it onto the drive.
If you have an esata port I'd highly recommend looking at high-speed ESata options like this Kanguru 32GB ESata/USB Flash drive OR this 32GB one by OCZ.
The read and write speeds of these drives are much higher over ESata than other USB drives. And you can still use them as USB if you don't have an ESata port. Though if you don't have an ESata port you can buy PCI to ESata cards online and even ESata ExpressCards for your laptop.
EDIT: A side note, you'll find the USB flash drives use FAT instead of NTFS. You don't want to use NTFS because it makes a lot more reads & writes on the disk and your drive will only have a limited number of reads & writes before it dies. But by using FAT you'll be limited to max 2GB file size which might be a problem with your VM. If this is the case, you can split your VM disks into 2GB chunks. Also make sure you backup your VM daily incase your drive does reach it's maximum number of writes. :)
This article on USB thumbdrives states,
Never run disk-intensive applications
directly against files stored on the
thumb drive.
USB thumbdrives utilize flash memory and these have a maximum number of writes before going bad and corruption occurs. The author of the previously linked article found it to be in the range of 10,000 - 100,000 writes but if you are using a disk intensive application this could be an issue.
So if you do this, have an aggressive backup policy to backup your work. Similarly, if when you run your development suite, if it could write to the local hard drive as a temporary workspace this would be ideal.
Hopefully you are talking about interpreted language projects. I couldn't imagine compiling a C/C++ of any size on a VM, let alone a VM running off of a USB drive.
I do it quite frequently with Xen, but also include a bare metal bootable kernel on the drive. This is particularly useful when working on something from which a live CD will be based.
The bad side is the bloat on the VM image to keep it bootable across many machines .. so where you would normally build a very lean and mean paravirtualized kernel only .. you have to also include one that has everything including the kitchen sink (up to what you want, i.e. do you need Audio, or token ring, etc?)
I usually carry two sticks, one has Xen + a patched Linux 2.6.26, the other has my various guest images which are ready to boot either way. A debootstrapped copy of Debian or Ubuntu makes a great starting point to create the former.
If nothing else, its fun to tinker with. Sorry to be a bit GNU/Linux centric, but that's what I use exclusively :) I started messing around with this when I had to find an odd path to upgrading my distro, which was two years behind the current one. So, I strapped a guest, installed what I wanted and pointed GRUB at the new LV for my root file system. Inside, I just mounted my old /home LV and away I went.
Check out MojoPac:
http://www.mojopac.com/
Hard-core gamers use it to take world of warcraft with them on the go -- it should work fine for your development needs, at least on Windows. Use cygwin with it for your unix-dev needs.
I used to do this, and found that compiling was so deathly slow, it wasn't worth it.
Keep in mind that USB flash drives are extremely slow (maybe 10 to 100 times slower) compared to hard drives at random write performance (writing lots of small files to a partition which already has lots of files).
A typical build process using GNU tools will create lots of small files - a simple configure script creates thousands of small files and deletes them again just to test the environment before you even start compiling. You could be waiting a long time.

Hardware requirements for a Virtual Server

We have decided to go with a virtualization solution for a few of our development servers. I have an idea of what the hardware specs would be like if we bought separate physical servers, but I have no idea how to consolidate that information into the specification for a generalized virtual server.
I know intuitively that the specs are not additive - I shouldn't just add up all the RAM requirements from each machine to get the RAM required for the virtual server. I can't really treat them as parallel systems either because no matter how good the virtualization software is, it can't abstract away two servers trying to peg the CPU at the same time.
So my question is - is there a standard method to estimating the hardware requirements for a virtualized system given hardware requirement estimations for the underlying virtual machines? Is there a +C constant for VMWare/MS Virtual Server overhead (and if so, what is C?)?
P.S. I promise to move this over to serverfault once it goes into beta (Promise kept)
Yes add 25% additional resources to manage the VM. So if I need 4 servers that are equal to single core 2 ghz machines with 2 gigs of ram I will need 10 ghz processing power plus 10 gigs of ram. This will allow all systems to redline and still be ok.
In the real world this will never happen though, all your servers will not always be running all the time. You can get a feel for usage by profiling your current servers and determine their exact requirements and then adding an additional 25% in resources.
Check out this software for profiling utilization http://confluence.atlassian.com/display/JIRA/Profiling+Memory+and+CPU+usage+with+YourKit
The requirements are in fact additive. You should add up the memory requirements for each VM, and the disk requirements, and have at least one processor core per VM. Then add on whatever you need for the host system.
VMs can share a CPU, to some extent, if you have really low performance requirements, but they cannot share disk space or memory.
Answers above are far too high, second (1 core per VM) is closer. You can either 1) plan ahead and probably over-purchase 2) add just-in-time. Do you have some reason that you must know well ahead (yearly budget? your chosen host platform doesn't cluster hosts, so you can't add later?)
Unless you have an incredible simple usage profile, it will be hard to predict before and you'll over purchase. The answer above (+25%) would be several times more than you need for an modern server virtualization software (VMware, Zen, etc) that manages resources smartly. It's accurate only for desktop products like VPC. I chose to rough it out on a napkin and profile my first environment (set of machines) on the host. I'm happy.
Examples of things that will confound your estimation
Disk space, Some systems (Lab
Manager) use only the difference in
space from the base template. 10
deployed machines with 10 GB drives
using about 10 GB (template) + 200MB.
Disk space: You'll then find you
don't like the deltas in specific
scenarios.
CPU / Memory: This is dev
shop - so you'll have erratic load.
Smart hosts don't reserve memory and CPU.
CPU / Memory: But then you'll
want to do perf testing, and want to
reserve CPU cycles (not all hosts can
do that)
We all virtualize for different reasons. Many of the guests
in our environment don't have much work. We want them there to see how something behaves with a cluster of 3 servers of type X. Or, we have a bundle of weird client desktops waiting around, being used one at time by a tester. They rarely consume many host resources.
So, if you are using something like that doesn't do delta disks, disk space might be somewhat calculable. If lab manager (delta disk), disk space is really hard to predict.
Memory and processor usage: You'll have to profile or over-purchase heavily. I have many more guest CPUs than host CPUS, and don't have perf problems - but that's because of the choppy usage in our QA environments.

Best Dual HD Set up for Development

I've got a machine I'm going to be using for development, and it has two 7200 RPM 160 GB SATA HDs in it.
The information I've found on the net so far seems to be a bit conflicted about which things (OS, Swap files, Programs, Solution/Source code/Other data) I should be installing on how many partitions on which drives to get the most benefit from this situation.
Some people suggest having a separate partition for the OS and/or Swap, some don't bother. Some people say the programs should be on the same physical drive as the OS with the data on the other, some the other way around. Same with the Swap and the OS.
I'm going to be installing Vista 64 bit as my OS and regularly using Visual Studio 2008, VMWare Workstation, SQL Server management studio, etc (pretty standard dev tools).
So I'm asking you--how would you do it?
If the drives support RAID configurations in your BIOS, you should do one of the following:
RAID 1 (Mirror) - Since this is a dev machine this will give you the fault tolerance and peace of mind that your code is safe (and the environment since they are such a pain to put together). You get better performance on reads because it can read from both/either drive. You don't get any performance boost on writes though.
RAID 0 - No fault tolerance here, but this is the fastest configuration because you read and write off both drives. Great if you just want as fast as possible performance and you know your code is safe elsewhere (source control) anyway.
Don't worry about mutiple partitions or OS/Data configs because on a dev machine you sort of need it all anyway and you shouldn't be running heavy multi-user databases or anything anyway (like a server).
If your BIOS doesn't support RAID configurations, however, then you might consider doing the OS/Data split over the two drives just to balance out their use (but as you mentioned, keep the programs on the system drive because it will help with caching). Up to you where to put the swap file (OS will give you dump files, but the data drive is probably less utilized).
If they're both going through the same disk controller, there's not going to be much difference performance-wise no matter which way you do it; if you're going to be doing lots of VM's, I would split one drive for OS and swap / Programs and Data, then keep all the VM's on the other drive.
Having all the VM's on an independant drive would let you move that drive to another machine seamlessly if the host fails, or if you upgrade.
Mark one drive as being your warehouse, put all of your source code, data, assets, etc. on there and back it up regularly. You'll want this to be stable and easy to recover. You can even switch My Documents to live here if wanted.
The other drive should contain the OS, drivers, and all applications. This makes it easy and secure to wipe the drive and reinstall the OS every 18-24 months as you tend to have to do with Windows.
If you want to improve performance, some say put the swap on the warehouse drive. This will increase OS performance, but will decrease the life of the drive.
In reality it all depends on your goals. If you need more performance then you even out the activity level. If you need more security then you use RAID and mirror it. My mix provides for easy maintenance with a reasonable level of data security and minimal bit rot problems.
Your most active files will be the registry, page file, and running applications. If you're doing lots of data crunching then those files will be very active as well.
I would suggest if 160gb total capacity will cover your needs (plenty of space for OS, Applications and source code, just depends on what else you plan to put on it), then you should mirror the drives in a RAID 1 unless you will have a server that data is backed up to, an external hard drive, an online backup solution, or some other means of keeping a copy of data on more then one physical drive.
If you need to use all of the drive capacity, I would suggest using the first drive for OS and Applications and second drive for data. Purely for the fact of, if you change computers at some point, the OS on the first drive doesn't do you much good and most Applications would have to be reinstalled, but you could take the entire data drive with you.
As for dividing off the OS, a big downfall of this is not giving the partition enough space and eventually you may need to use partitioning software to steal some space from the other partition on the drive. It never seems to fail that you allocate a certain amount of space for the OS partition, right after install you have several gigs free space so you think you are fine, but as time goes by, things build up on that partition and you run out of space.
With that in mind, I still typically do use an OS partition as it is useful when reloading a system, you can format that partition blowing away the OS but keep the rest of your data. Ways to keep the space build up from happening too fast is change the location of your my documents folder, change environment variables for items such as temp and tmp. However, there are some things that just refuse to put their data anywhere besides on the system partition. I used to use 10gb, these days I go for 20gb.
Dividing your swap space can be useful for keeping drive fragmentation down when letting your swap file grow and shrink as needed. Again this is an issue though of guessing how much swap you need. This will depend a lot on the amount of memory you have and how much stuff you will be running at one time.
For the posters suggesting RAID - it's probably OK at 160GB, but I'd hesitate for anything larger. Soft errors in the drives reduce the overall reliability of the RAID. See these articles for the details:
http://alumnit.ca/~apenwarr/log/?m=200809#08
http://permabit.wordpress.com/2008/08/20/are-fibre-channel-and-scsi-drives-more-reliable/
You can't believe everything you read on the internet, but the reasoning makes sense to me.
Sorry I wasn't actually able to answer your question.
I usually run a box with two drives. One for the OS, swap, typical programs and applications, and one for VMs, "big" apps (e.g., Adobe CS suite, anything that hits the disk a lot on startup, basically).
But I also run a cheap fileserver (just an old machine with a coupla hundred gigs of disk space in RAID1), that I use to store anything related to my various projects. I find this is a much nicer solution than storing everything on my main dev box, doesn't cost much, gives me somewhere to run a webserver, my personal version control, etc.
Although I admit, it really isn't doing much I couldn't do on my machine. I find it's a nice solution as it helps prevent me from spreading stuff around my workstation's filesystem at random by forcing me to keep all my work in one place where it can be easily backed up, copied elsewhere, etc. I can leave it on all night without huge power bills (it uses <50W under load) so it can back itself up to a remote site with a little script, I can connect to it from outside via SSH (so I can always SCP anything I need).
But really the most important benefit is that I store nothing of any value on my workstation box (at least nothing that isn't also on the server). That means if it breaks, or if I want to use my laptop, etc. everything is always accessible.
I would put the OS and all the applications on the first disk (1 partition). Then, put the data from the SQL server (and any other overflow data) on the second disk (1 partition). This is how I'd set up a machine without any other details about what you're building. Also make sure you have a backup so you don't lose work. It might even be worth it to mirror the two drives (if you have RAID capability) so you don't lose any progress if/when one of them fails. Also, backup to an external disk daily. The RAID won't save you when you accidentally delete the wrong thing.
In general I'd try to split up things that are going to be doing a lot of I/O (such as if you have autosave on VS going off fairly frequently) Think of it as sort of I/O multithreading
I've observed significant speedups by putting my virtual machines on a separate disk. Whenever Windows is doing something stupid in the VM (e.g., indexing yet again), it doesn't thrash my Mac's disk quite so badly.
Another issue is that many tools (Visual Studio comes to mind) break in frustrating ways when bits of them are on the non-primary disk.
Use your second disk for big random things.