Calling method on dynamic Class in Objective-C? - objective-c

How do I formulate
[NSClassFromString(classname) myMethod:param1 more:param2];
such that the compiler does not give a warning saying that +myMethod may not be implemented ?

[NSClassFromString(classname) performSelector: #selector(myMethod:more:) withObject:param1 withObject:param2];

Quick & dirty: cast the return of NSClassFromString to id, if myMethod:more: is unique. The method binding doesn't happen until runtime, so the correct impl will be called.
Slightly cleaner: use NSObject's -(id)performSelector:(SEL)aSelector withObject:(id)anObject withObject:(id)anotherObject, if param1 and param2 are ids. It works for class methods too when called on a class object.

Well, since you have multiple arguments, you can’t use -performSelector:withObject:. You’ll have to use what Objective-C uses under the hood, objc_msgSend(). But first you’ll have to cast it. Here’s how:
In your implementation file (.m), add the line #import <objc/message.h> to the top. Then, you need to cast objc_msgSend() appropriately. In this example, we’ll assume that param1 and param2 are Objective-C objects and that -myMethod:more: returns void.
void (*myMsgSend)(id self, SEL _cmd, id param1, id param2);
myMsgSend = (void(*)(id, SEL, id, id))objc_msgSend;
Once you’ve cast it appropriately, call your new function:
myMsgSend(obj, #selector(myMethod:more:), param1, param2);

Try typecasting the value returned by NSClassFromString() to id first.

Related

Objective C Instance Method Help *Beginner*

Can you guys help me understand a concept real quick, I'm having trouble understanding the conversion from C to objective-C:
If I had a particular instance method that look like this:
-(void)addOwnerNamesObject:(NSString *)n;
{
// ownerNames defined as NSMutableSet
[ownerNames addObject:n];
}
I understand a few things...
It is an instance method that can be called by the program.
In C this would not return anything (just execute the code in the curlies)
In C, the syntax is slightly less confusing - (void)InstanceMethod(Char *nameOfArgument)
Here's where I need help:
When you call this method are you still sending it an argument?
If so, is that argument an NSString instance that the method names n?
And finally... off topic
If you have a method...
-(id)someMethod:(NSString *)pn
{
}
What is the (id) for? does that tell the compiler that it can return any type of object?
Thanks for helping the Newbie... Much appreciated.
First of all, you should really take a look at the basic Objective-C documentation.
In Objective-C, a method can be preceded by a + or - sign.
+ is for class methods, - is for instance methods.
Then you have the return type, inside parenthesis, and the method name.
- ( int )foo;
An instance method named foo, returning an int.
A similar C function would be:
int foo( void );
In Objective-C, the method name is a bit special when you have arguments.
For instance:
- ( int )foo: ( double )num;
A member method named foo:, returning an int and taking a double argument named num.
Similar C function:
int foo( double num );
Now with multiple arguments:
- ( int )foo: ( double )num1 bar: ( float )num2;
A member method named foo:bar:, returning an int and taking a double argument named num1 and a float argument named num2.
Similar C function:
int foo( double num1, float num2 );
About your question on id, it's simply the method return type.
id is a typedef used for Objective-C instances.
Basically, it's a void *.
id does represent an Objective-C object pointer, for any class.
You already know what you're talking about.
1.) When you call this method are you still sending it an argument?
yes, whatever is after the colon
add multiple colons to pass additional parameters...
-(void)addOwnerNamesObject:(NSString *)n withSomeIntYouWantToPass:(int)value;
2.) If so, is that argument an NSString instance that the method names 'n'?
yes
3.) What is the (id) for? Does that tell the compiler that it can return any type of object?
yes, you will return an NSObject or subclass of NSObject
First the dash (-) in the method name says that this is an instance method which means you need an instance to send this message to. The call would look something like this:
NSString* s = #"a string";
[someInstance addOwnersNameObject:s];
In this case you are passing the NSString instance s to the addOwnersNameObject message.
id is like void * in C.
To add to those very valid answers already given with a further discussion of id:
Objects in Objective-C are typeless, which means that at a fundamental level you don't need to know the type to be able to talk to the object. That's one of the big differences between Objective-C and, say, C++.
Pointers to objects are usually typed, such as NSString * to make the code more readable and to indicate your intentions to the compiler so that it can provide suitable warnings if you do anything odd.
id is a typeless pointer to an object. Any object type can be passed as id and any id value can be assigned to any object pointer without casting.
99.99% of the time, id could be replaced with NSObject * since 99.99% of objects inherit from NSObject, meaning that you could use the fact of inheritance rather than the fact of typeless objects to pass things around generically. However NSObject is a little bit special in being both an object and a protocol and some objects aren't actually subclasses of NSObject — NSProxy and the classes that represent blocks jump immediately to mind. You'll rarely be particularly interested in those special cases but id is nevertheless often used as a convention because people prefer the semantics of passing an object with no indication of its type to passing an object with a known ancestor.

How to create an NSInvocation from a called method implementation?

I have a function that looks like this:
void myMethodImpl(id self, SEL _cmd, ...)
I use this as a implementation for a method on a class
class_addMethod(aClass, aSelector, (IMP)myMethodImpl, types);
so myMethodImpl get's called when a message is sent to aClass with selector aSelector. Now there I'd like to create an NSInvocation with all parameters from myMethodImpl.
Is there an easy way to create a NSInvocation from the parameter list or do I have to check every element for it's type and add it accordingly?
Since you're adding a method to the class, why not add/swizzle forwardInvocation: instead? At that point the runtime will have nicely built an invocation for you.
This is not possible. A simple google search shows this article:
http://www.wincent.com/a/about/wincent/weblog/archives/2006/03/nsinvocation_an.php
Which clearly explains how va_args don't properly work with NSInvocation.
It is possible, indeed. Have a look to the actionSelectorImplementation function in https://github.com/rlopezdiez/TMInstanceMethodSwizzler/blob/master/Classes/TMInstanceMethodSwizzler.m

Use performSelector with three or more arguments?

The various performSelector:... methods can handle a maximum of two arguments passed to the specified selector. What can I do if I need to pass three or more arguments?
You need to use NSInvocation class for that. Check this SO question for more details on using them.
I dislike the NSInvocation way, it needs too much code.
If you’d like perform the selector immediately, here is an simple and clean way:
// Assume we have these variables
id target, SEL aSelector, id parameter1, id parameter2;
// Get the method IMP, method is a function pointer here.
id (*method)(id, SEL, id, id) = (void *)[vc methodForSelector:aSelector];
// IMP is just a C function, so we can call it directly.
id returnValue = method(vc, aSelector, parameter1, parameter2);

Should I be casting when returning id from an objective-c method or not?

For the Objective-C gurus:
Suppose I have a simple method like so:
-(id)getValue{ return [NSNumber numberWithDouble:5.0]; }
Now, suppose within some other method I call the (id)getValue method like so:
NSNumber* myValue = [self getValue];
or what if I call it like this instead:
NSNumber* myValue = (NSNumber*)[self getValue];
The question is: Obviously these lines are equivalent but one of them utilizes an explicit cast. So what is the correct or best-practice way of doing this. It seams to me the cast is unnecessary since when it is placed in the pointer myValue, it will be type-safe at this point anyways (which is something I want) so the cast is basically pointless.
Let me just add that I'm sure people will point out: Why don't you just return (NSNumber*) from the getValue method but in my case I want to have the flexibility to return whatever I want much like the built in NSDictionary class returns id when you call: objectForKey because it allows you to place any type of NSObject or subclass inside of it. In other words my getValue method will not always be returning an NSNumber. Also consider this example is contrived because I am just concerned about whether to cast or not.
Thank you in advance,
-Ralph
The only reason to cast objects is to make the compiler happy. (Sometimes it also helps readability.) For example, you have to cast when making a property access directly on an object you're getting out of an array or dictionary:
((Foo *)[myArray objectAtIndex:0]).bar;
If you don't do the cast, the compiler can't do the property lookup, and will complain.
When you're getting an object from a method that returns id, it's impossible for the compiler to know what its actual type is. There isn't really any "type-safety", because id is a generic pointer; all the compiler can and will enforce is that the method says it returns some Objective-C object. It is perfectly happy to assign a generic pointer to any typed pointer.* (This is actually an advantage for containers, obviously.) Since the type of the variable to which you're assigning already documents the actual return type, I'd say there's no need for the cast.
As an aside, you shouldn't be calling your method getX. That has a specific meaning in Cocoa; methods which "get" something pass in a pointer to a pointer, which is then filled by the method. See -[NSArray getObjects:range:] as an example.
*The type will be enforced at run-time, of course, in the sense that sending messages to which the object does not respond will cause an error.

Elementary Obj-C Question bout Methods

take example:
-(void)setName:(NSString *)name age:(int)age;
How would you call this method (in other words, the method's name is setName but what is the "age" parameter doing in there) and what do the types in parentheses mean? Is it just a way to tell the compiler what types are being returned?
[ myObject setName: #"Adam" age:18 ];
The age parameter is the second parameter in the method signature.
The types in parentheses are the expected types for the argument. e.g. name is expecting only an NSString and age is expecting only an int.
The - means that the method is an instance method, not a class method, which is denoted using a + instead.
The type in parentheses right after the - is the return type.
This is a great site for learning the basics of Objective-C: CocoaDevCentral
To answer, one would need a bit more information, but I'll be guessing this is from some sort of class named aClass, and you have an instance of aClass, named instance.
-(void)setName:(NSString *)name age:(int)age;
means you have a method, named setName:age:, that needs two arguments, one NSString, one int, and it returns a void. As it has a - as it's first character, it is an instance method.
[instance setName:#"James Hargrove" age:21];
Would call setName:age: on the instance.
(The instance should be created using, say,
aClass *instance = [[aClass alloc] init];
which would create an instance of aClass named instance, and initialize it.
This is the standard Objective-C method syntax. This could be read as:
A method with no return value (void) that
sets the name of the object (an NSString * parameter)
and the age (and integer
parameter).
Dissecting the method:
"-" The hyphen states that this is an instance method.
(void) The return type is void - or
no return type expected
setName:(NSString *) The first
parameter to be passed is the "name"
and is an NSString *.
age:(int)age The second parameter
to be passed is the "age" and is
an int.
In reality, the method syntax is actually quite self-documenting once understood (and quite foreign if you're used to more tradition C/C++ or Java syntax).
The actual example of the call of this method would be:
[someObject setName:#"Rich" age:101];
The method name is actually this:
setName:age:
You call it like this:
[someObject setName:#"Alice" age:20];
setName:age: is also the unique signature of that method, and with that signature you can call that method on any object you wish. For example:
NSArray* objects = ...
SEL mySelector = #selector(setName:age:);
for (id object in objects)
{
if ([object respondsToSelector:mySelector])
{
[object setName:#"Alice" age:20];
}
}
what do the types in parentheses mean? Is it just a way to tell the compiler what types are being returned?
Yes, those are "C casts". If everything was an object you wouldn't need those, but because you can pass and return plain old C types to and from your methods, the compiler needs to know the types of your parameters and return values.
You'd call this method like so:
[classInstance setName:#"name" age:123];
The first instance of "age:" indicates that the method receives another parameter, called "age" when used in the implementation of the method.
The types in parentheses indicate the types of data that are expected for each parameter, with the exception of the first one, "void", which means that this method returns nothing.
So, you would call this method as follows.
Say it is a method of an object named foo (of class Foo). Then you would call:
[foo setName:someName age:someAge].
If it were a static method, it would be preceded by a + instead of a minus as follows:
+(void)setName:(NSString *)name age:(int)age;
Then you would call
[Foo setName:someName age:someAge] //use the classname instead of the object name
The types are indeed there for type-checking by the compiler. You'll get warnings if you pass the wrong sort of data, and you will get warnings if your header doesn't match your implementation.
You can actually write Obj-C functions in a couple of different styles though, omitting some of this stuff. You can even write straight up C-style.