Quite new to Solr 1.4 - seems to be very powerful indeed. However, I am stuck when trying to return search results in order of relevancy (score) and rating_value (a 0 to 5 star rating on each result).
I've tried ordering search results by "rating desc, score desc", and while this works, it feels a bit basic.
I would ultimately like to boost the relevancy of a search result based on how many stars it has been rated as (0 to 5). A 5-star result should therefore give the highest boost.
I did try adding 'rating_value:1^0.1 rating_value:2^0.2' etc, etc, but this seems to massively boost answers that have no keyword match, but do have a high star rating.
Any help is VERY much appreciated!
Thanks, Seb
You are on the right track with adding the "rating_value" terms with boost values. However, make sure when you are constructing your query, that the keyword terms are "MUST" terms, which will require the doc to contain that term in order for it to be returned.
From there you can play with the relative boost values for each term. If the rating boost is too high, you can give the keywords more boost, and vice-versa. It's important to know that the absolute values of the boost is not comparable across fields, i.e. giving keywords a boost of 20 and rating_value a boost of 19 will does not mean that keywords will be boosted more, mainly because of length normalization. See Lucene's Similarity for more info.
If you are using the DISMAX request handler you should also consider boosting using the bq (boost query) field, as this boost only affects documents that are already matched by the users query.
You would predefine the bq field in solrconfig.xml inside the request handler e.g.
<str name="bq">
rating_value:1^0.1 rating_value:2^0.2
</str>
Related
Using SOLR version 4.3, it appears that SOLR is valuing the percentage of matching terms more than the number of matching terms.
For example, we do a search for Dog and a document with just the word dog and a three other words returns. We have another article with hundreds of words, that has the word dog in it 27 times.
I would expect the second article to return first. However, the one with one word out of three returns first. I was hoping to find out what in SOLR controls this so I can make the appropriate modifications. I have looked the SOLR documentation and have seen COORD mentioned, but it seems to indicate that the article with 27 references should return first. Any help would be appreciated.
For 4.x Solr still used regular TF/IDF as its scoring formula, and you can see the Lucene implementation detailed in the documentation for TFIDFSimilarity.
For your question, the two factors that affect the score is:
The length of the field, as given in norm():
norm(t,d) encapsulates a few (indexing time) boost and length factors:
Field boost - set by calling field.setBoost() before adding the field to a document.
lengthNorm - computed when the document is added to the index in accordance with the number of tokens of this field in the document, so that shorter fields contribute more to the score. LengthNorm is computed by the Similarity class in effect at indexing.
.. while the number of terms matching (not their frequency), is given by coord():
coord(q,d) is a score factor based on how many of the query terms are found in the specified document. Typically, a document that contains more of the query's terms will receive a higher score than another document with fewer query terms. This is a search time factor computed in coord(q,d) by the Similarity in effect at search time.
There are a few settings in your schema that can affect how Solr scores the documents in your example:
omitNorms
If true, omits the norms associated with this field (this disables length normalization for the field, and saves some memory)
.. this will remove the norm() part of the score.
omitTermFreqAndPositions
If true, omits term frequency, positions, and payloads from postings for this field.
.. and this will remove the boost from multiple occurrences of the same term. Be aware that this will remove positions as well, making phrase queries impossible.
But you should also consider upgrading Solr, as the BM25 similarity that's the default from 6.x usually performs better. I can't remember if a version is available for 4.3.
I am working on an image retrieval task. I have a dataset of wikipedia images with their textual description in xml files (1 xml file per image). I have indexed those xmls in Solr. Now while retrieving those, I want to maintain some threshold for Score values, so that docs with less score will not come in the result (because they are not of much importance). For example I want to retrieve all documents having similarity score greater than or equal to 2.0. I have already tried range queries like score:[2.0 TO *] but can't get it working. Does anyone have any idea how can I do that?
What's the motivation for wanting to do this? The reason I ask, is
score is a relative thing determined by Lucene based on your index
statistics. It is only meaningful for comparing the results of a
specific query with a specific instance of the index. In other words,
it isn't useful to filter on b/c there is no way of knowing what a
good cutoff value would be.
http://lucene.472066.n3.nabble.com/score-filter-td493438.html
Also, take a look here - http://wiki.apache.org/lucene-java/ScoresAsPercentages
So, in general it's bad to cut off by some value, because you'll never know which threshold value is best. In good query it could be score=2, in bad query score=0.5, etc.
These two links should explain you why you DONT want to do it.
P.S. If you still want to do it take a look here - https://stackoverflow.com/a/15765203/2663985
P.P.S. I recommend you to fix your search queries, so they will search better with high precision (http://en.wikipedia.org/wiki/Precision_and_recall)
I have 2 documents, and am searching for the keyword "Twitter". Suppose both documents are blog posts with a "tags" field.
Document A has ONLY 1 term in the "tags" field, and it's "Twitter".
Document B has 100 terms in the "tags" field, but 3 of them is "Twitter".
Elastic Search gives the higher score to Document A even though Document B has a higher frequency. But the score is "diluted" because it has more terms. How do I give Document B a higher score, since it has a higher frequency of the search term?
I know ElasticSearch/Lucene performs some normalization based on the number of terms in the document. How can I disable this normalization, so that Document B gets a higher score above?
As the other answer says it would be interesting to see whether you have the same result on a single shard. I think you would and that depends on the norms for the tags field, which is taken into account when computing the score using the tf/idf similarity (default).
In fact, lucene does take into account the term frequency, in other words the number of times the term appears within the field (1 or 3 in your case), and the inverted document frequency, in other words how the term is frequent in the index, in order to compare it with other terms in the query (in your case it doesn't make any difference if you are searching for a single term).
But there's another factor called norms, that rewards shorter fields and take into account eventual index time boosting, which can be per field (in the mapping) or even per document. You can verify that norms are the reason of your result enabling the explain option in your search request and looking at the explain output.
I guess the fact that the first document contains only that tag makes it more important that the other ones that contains that tag multiple times but a lot of ther tags as well. If you don't like this behaviour you can just disable norms in your mapping for the tags field. It should be enabled by default if the field is "index":"analyzed" (default). You can either switch to "index":"not_analyzed" if you don't want your tags field to be analyzed (it usually makes sense but depends on your data and domain) or add the "omit_norms": true option in the mapping for your tags field.
Are the documents found on different shards? From Elastic search documentation:
"When a query is executed on a specific shard, it does not take into account term frequencies and other search engine information from the other shards. If we want to support accurate ranking, we would need to first execute the query against all shards and gather the relevant term frequencies, and then, based on it, execute the query."
The solution is to specify the search type. Use dfs_query_and_fetch search type to execute an initial scatter phase which goes and computes the distributed term frequencies for more accurate scoring.
You can read more here.
I have a Lucene indexed corpus of more than 1 million documents.
I am searching for named entities such as "Susan Witting" by using the the Lucene java API for queries.
I would like to expand my queries by also searching for "Sue Witting" for example but would like that term to have a lower weight than the main query term.
How can I go about doing that?
I found infos about the boosting option in the Lucene Manual. But it seems to be set at indexing and it needs fields.
You can boost each query clause independently. See the Query Javadoc.
If you want to give different weight to the words of a term. Then
Query#setBoost(float)
is not useful. A better way is:
Term term = new Term("some_key", "stand^3 firm^2 always");
This allows to give different weight to words in the same term query. Here, the word stand boosted by three but always is has the default boost value.
We have an application where every term position in a document is associated with an "engine score".
A term query should then be scored according to the sum of "engine scores" of the term in a document, rather than on the term frequency.
For example, term frequency of 5 with an average engine score of 100 should be equivalent to term frequency of 1 with engine score 500.
I understood that if I keep the engine score per position in the payload, I will be able to use scorePayload in combination of a summary version of PayloadFunction to get the sum of engine scores of a term in a document, and so will be able to achieve my goal.
There are two issues with this solution:
Even the simplest term query should scan the positions file in order to get the payloads, which could be a performance issue.
We would prefer to index the sum of engine scores in advance per document, in addition to the term frequency. This is some sort of payload in the document level. Does Lucene support that or have any other solution for this issue ?
The "engine score" of a phrase occurrence is defined as the multiplication of engine scores of the terms that compose the phrase.
So in scorePayload I need the payloads of all the terms in the phrase in order to be able to appropriately score the phrase occurrence.
As much as I understand, the current interface of scorePayload does not provide this information.
Is there another way this can be achieved in Lucene ?
One workaround for a document-level payload is to create a single Lucene document / your document that just contains the engine score for your whole document as a specially-named field (different from all other Lucene document field names). You can then combine / extract that document during your searches. Not much of a workaround, but there it is.