How to exclusively lock a row that prevent CRUD operation - sql

Hi expert
how I can lock a row in sql server that prevent CRUD operation even SELECT.
Is it Possible?
Serializable Isolation level does not prevent SELECT.
thanks

BEGIN TRAN
SELECT 1
FROM Table
WITH (XLOCK, ROWLOCK)
COMMIT TRAN
That will do the trick.
EDIT
As noted by others, you cannot lock a row to not be read. The only way I know of doing this is as follows:
WITH (UPDLOCK, TABLOCK)
And this is assuming that a WITH (NOLOCK) is never used in a SELECT statement (which should be avoided anyway).
I tested this and it will work, although TABLOCK should only be used in extreme cases. Certainly if concurrency is required, it's a bad solution and some other form of locking would be needed. One way is to update a bit column "Available True/False" and only read rows where Available = True. As #gbn suggested, READPAST could be used with this.

try using the ROWLOCK and UPDLOCK inside a transaction something like this:
BEGIN TRANSACTION
SELECT #ID = ID
FROM YourTable WITH (ROWLOCK, UPDLOCK)
WHERE ....
--more--
COMMIT TRANSACTION
however you can't prevent a SELECT that uses the NOLOCK hint from "dirty" reading this.

As well as ROWLOCK, XLOCK as suggested by other folk, I would consider READPAST in addition
This allows allows other readers and writers to skip the lock on this row. This can increase concurrency because the lock set by ROWLOCK, XLOCK s blocking otherwise

SQL Server already natively locks a record from dirty reads as it is being updated. This has the effect of blocking the select call until the update / insert call is complete.

It's possible to lock a row using a locking hint WITH (ROWLOCK), however a SELECT statement can always get around it by adding a locking hint WITH (NOLOCK) which will provide a dirty read.

Related

SQL database locking difference between SELECT and UPDATE

I am re-writing an old stored procedure which is called by BizTalk. Now this has the potential to have 50-60 messages pushed through at once.
I occasionally have an issue with database locking when they are all trying to update at once.
I can only make changes in SQL (not BizTalk) and I am trying to find the best way to run my SP.
With this in mind what i have done is to make the majority of the statement to determine if an UPDATE is needed by using a SELECT statement.
What my question is - What is the difference regarding locking between an UPDATE statement and a SELECT with a NOLOCK against it?
I hope this makes sense - Thank you.
You use nolock when you want to read uncommitted data and want to avoid taking any shared lock on the data so that other transactions can take exclusive lock for updating/deleting.
You should not use nolock with update statement, it is really a bad idea, MS says that nolock are ignored for the target of update/insert statement.
Support for use of the READUNCOMMITTED and NOLOCK hints in the FROM
clause that apply to the target table of an UPDATE or DELETE statement
will be removed in a future version of SQL Server. Avoid using these
hints in this context in new development work, and plan to modify
applications that currently use them.
Source
Regarding your locking problem during multiple updates happening at the same time. This normally happens when you read data with the intention to update it later by just putting a shared lock, the following UPDATE statement can’t acquire the necessary Update Locks, because they are already blocked by the Shared Locks acquired in the different session causing the deadlock.
To resolve this you can select the records using UPDLOCK like following
DECLARE #IdToUpdate INT
SELECT #IdToUpdate =ID FROM [Your_Table] WITH (UPDLOCK) WHERE A=B
UPDATE [Your_Table]
SET X=Y
WHERE ID=#IdToUpdate
This will take the necessary Update lock on the record in advance and will stop other sessions to acquire any lock (shared/exclusive) on the record and will prevent from any deadlocks.
NOLOCK: Specifies that dirty reads are allowed. No shared locks are issued to prevent other transactions from modifying data read by the current transaction, and exclusive locks set by other transactions do not block the current transaction from reading the locked data. NOLOCK is equivalent to READUNCOMMITTED.
Thus, while using NOLOCK you get all rows back but there are chances to read Uncommitted (Dirty) data. And while using READPAST you get only Committed Data so there are chances you won’t get those records that are currently being processed and not committed.
For your better understanding please go through below link.
https://www.mssqltips.com/sqlservertip/2470/understanding-the-sql-server-nolock-hint/
https://www.mssqltips.com/sqlservertip/4468/compare-sql-server-nolock-and-readpast-table-hints/
https://social.technet.microsoft.com/wiki/contents/articles/19112.understanding-nolock-query-hint.aspx

What is wrong with the below tsql code

BEGIN TRAN
SELECT * FROM AnySchema.AnyTable
WHERE AnyColumn = SomeCondition
COMMIT
I know the transaction is not required here because it is just a select but just want to know how bad a programming it is and whether it is going to be an overhead on the DB engine.
You may use transaction on SELECT statements to ensure nobody else could update / delete records of the table of while the bunch of your select queries are executing.
Using WITH(NOLOCK):
Anyways, you may also use WITH(NOLOCK) for t_sql
SELECT * FROM AnySchema.AnyTable WITH(NOLOCK)
WHERE AnyColumn = SomeCondition
WITH (NOLOCK) is the equivalent of using READ UNCOMMITED as a transaction isolation level. Here stand the risk of reading an uncommitted row that is subsequently rolled back, i.e. data that never made it into the database.
So, while it can prevent reads being deadlocked by other operations, it comes with a risk.
TRANSACTION Block :
Using TRANSACTION block will not cause much of extra DB overload but if you keep the same type practice on, and suppose , at any SQL block you forget (you / your developers may forget, right ?) to close the transaction, then other processes can't work on the same table.
Anyways, it depends on what type of application you are using. If very frequent update and select things are there , it is advised not to use such transaction blocks. If medium level of updates and select are there, occurs next to each other, you may use transaction blocks for select (but ensure to close the transaction).
That's actually a good question. To understand what's going on, you need to know about SET IMPLICIT_TRANSACTIONS.
When ON, the system is in implicit transaction mode. This means that if ##TRANCOUNT = 0, any of the following Transact-SQL statements begins a new transaction. It is equivalent to an unseen BEGIN TRANSACTION being executed first:
When OFF, each of the preceding T-SQL statements is bounded by an unseen BEGIN TRANSACTION and an unseen COMMIT TRANSACTION statement. When OFF, we say the transaction mode is autocommit. [this is the default]
If your T-SQL code visibly issues a BEGIN TRANSACTION, we say the transaction mode is explicit.
https://msdn.microsoft.com/en-us/library/ms187807.aspx
Since the SQL Server would have created a transaction for you, manually doing doesn't actually change anything. The exact same thing would have happened either way.
Summary: What you are doing isn't 'wrong' because it has no effect, but unnecessary and confusing to the reader.
I think you would be taking a holdlock and most likely a tablock
table hints
That is not always a good thing as you would block any update or deletes (maybe even inserts)
It would be better to let SQL decide what level of of locks to take. Most likely pagelocks. I would stay away from nolock as bad stuff can happen.
On a select on a single table just let the optimizer do it's thing.

Is xlock,rowlock,holdlock correct?

I saw the combination of (xlock,rowlock,holdlock) is used for a table. Refer to online book, holdlock is to hold shared lock(for read,such as select) until transaction is done and xlock is exclusive lock(write lock) for data modification, such as update, insert or delete. How could we use read and write a table at the same time? I am wondering if the combination take effect or not. Confusing...
Locking hints come in various types:
Granularity: rowlock, paglock, tablock
Lock type: nolock, updlock, xlock
Other hints: holdlock, readpast, nowait
The combination you suggest is xlock, rowlock, holdlock. Those three do not conflict. It'll lead to an exclusive rowlock that is held until the end of the transaction.

Deadlocks - Will this really help?

So I've got a query that keeps deadlocking on me. People who know the system well can't figure out why the sproc is deadlocking, but they tell me that I should just add this to it:
SET NOCOUNT ON
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
Is this really a valid solution? What does that do?
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
This will cause the system to return inconsitent data, including duplicate records and missing records. Read more at Previously committed rows might be missed if NOLOCK hint is used, or here at Timebomb - The Consistency problem with NOLOCK / READ UNCOMMITTED.
Deadlocks can be investigated and fixed, is not a big deal if you follow the proper procedure. Of course, throwing a dirty read may seem easier, but down the road you'll be sitting long hours staring at your general ledger and wondering why the heck it does not balance debits and credits. So read again until you really grok this: DIRTY READs ARE INCONSISTENT READS.
If you want a get-out-of-jail card, turn on snapshot isolation:
ALTER DATABASE MyDatabase
SET READ_COMMITTED_SNAPSHOT ON
But keep in mind that snapshot isolation does not fix the deadlocks, it only hides them. Proper investigation of the deadlock cause and fix is always the appropriate action.
NOCOUNT will keep your query from returning rowcounts back to the calling application (i.e. 1000000 rows affected).
TRANSACTION ISOLATION LEVEL READ UNCOMMITTED will allow for dirty reads as indicated here.
The isolation level may help, but do you want to allow dirty reads?
Randomly adding SET options to the query is unlikely to help I'm afraid
SET NOCOUNT ON
Will have no effect on the issue.
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
will prevent your query taking out shared locks. As well as reading "dirty" data it also can lead to your query reading the same rows twice, or not at all, dependant upon what other concurrent activity is happening.
Whether this will resolve your deadlock issue depends upon the type of deadlock. It will have no effect at all if the issue is 2 writers deadlocking due to non linear ordering of lock requests. (transaction 1 updating row a, transaction 2 updating row b then tran 1 requesting a lock on b and tran 2 requesting a lock on a)
Can you post the offending query and deadlock graph? (if you are on SQL 2005 or later)
The best guide is:
http://technet.microsoft.com/es-es/library/ms173763.aspx
Snippet:
Specifies that statements can read rows that have been modified by other
transactions but not yet committed.
Transactions running at the READ
UNCOMMITTED level do not issue shared
locks to prevent other transactions
from modifying data read by the
current transaction. READ UNCOMMITTED
transactions are also not blocked by
exclusive locks that would prevent the
current transaction from reading rows
that have been modified but not
committed by other transactions. When
this option is set, it is possible to
read uncommitted modifications, which
are called dirty reads. Values in the
data can be changed and rows can
appear or disappear in the data set
before the end of the transaction.
This option has the same effect as
setting NOLOCK on all tables in all
SELECT statements in a transaction.
This is the least restrictive of the
isolation levels.
In SQL Server, you can also minimize
locking contention while protecting
transactions from dirty reads of
uncommitted data modifications using
either:
The READ COMMITTED isolation level
with the READ_COMMITTED_SNAPSHOT
database option set to ON. The
SNAPSHOT isolation level
.
On a different tack, there are two other aspects to consider, that may help.
1) Indexes and the indexes used by the SQL. The indexing strategy used on the tables will affect how many rows are affected. If you make the data modifications using a unique index, you may reduce the chance of deadlocks.
One algorithm - of course it will not work it all cases. The use of NOLOCK is targeted rather than being global.
The "old" way:
UPDATE dbo.change_table
SET somecol = newval
WHERE non_unique_value = 'something'
The "new" way:
INSERT INTO #temp_table
SELECT uid FROM dbo.change_table WITH (NOLOCK)
WHERE non_unique_value = 'something'
UPDATE dbo.change_table
SET somecol = newval
FROM dbo.change_table c
INNER JOIN
#temp_table t
ON (c.uid = t.uid)
2) Transaction duration
The longer a transaction is open the more likely there may be contention. If there is a way to reduce the amount of time that records remain locked, you can reduce the chances of a deadlock occurring.
For example, perform as many SELECT statements (e.g. lookups) at the start of the code instead of performing an INSERT or UPDATE, then a lookup, then an INSERT, and then another lookup.
This is where one can use the NOLOCK hint for SELECTs on "static" tables that are not changing reducing the lock "footprint" of the code.

SELECT FOR UPDATE with SQL Server

I'm using a Microsoft SQL Server 2005 database with isolation level READ_COMMITTED and READ_COMMITTED_SNAPSHOT=ON.
Now I want to use:
SELECT * FROM <tablename> FOR UPDATE
...so that other database connections block when trying to access the same row "FOR UPDATE".
I tried:
SELECT * FROM <tablename> WITH (updlock) WHERE id=1
...but this blocks all other connections even for selecting an id other than "1".
Which is the correct hint to do a SELECT FOR UPDATE as known for Oracle, DB2, MySql?
EDIT 2009-10-03:
These are the statements to create the table and the index:
CREATE TABLE example ( Id BIGINT NOT NULL, TransactionId BIGINT,
Terminal BIGINT, Status SMALLINT );
ALTER TABLE example ADD CONSTRAINT index108 PRIMARY KEY ( Id )
CREATE INDEX I108_FkTerminal ON example ( Terminal )
CREATE INDEX I108_Key ON example ( TransactionId )
A lot of parallel processes do this SELECT:
SELECT * FROM example o WITH (updlock) WHERE o.TransactionId = ?
EDIT 2009-10-05:
For a better overview I've written down all tried solutions in the following table:
mechanism | SELECT on different row blocks | SELECT on same row blocks
-----------------------+--------------------------------+--------------------------
ROWLOCK | no | no
updlock, rowlock | yes | yes
xlock,rowlock | yes | yes
repeatableread | no | no
DBCC TRACEON (1211,-1) | yes | yes
rowlock,xlock,holdlock | yes | yes
updlock,holdlock | yes | yes
UPDLOCK,READPAST | no | no
I'm looking for | no | yes
Recently I had a deadlock problem because Sql Server locks more then necessary (page). You can't really do anything against it. Now we are catching deadlock exceptions... and I wish I had Oracle instead.
Edit:
We are using snapshot isolation meanwhile, which solves many, but not all of the problems. Unfortunately, to be able to use snapshot isolation it must be allowed by the database server, which may cause unnecessary problems at customers site. Now we are not only catching deadlock exceptions (which still can occur, of course) but also snapshot concurrency problems to repeat transactions from background processes (which cannot be repeated by the user). But this still performs much better than before.
I have a similar problem, I want to lock only 1 row.
As far as I know, with UPDLOCK option, SQLSERVER locks all the rows that it needs to read in order to get the row. So, if you don't define a index to direct access to the row, all the preceded rows will be locked.
In your example:
Asume that you have a table named TBL with an id field.
You want to lock the row with id=10.
You need to define a index for the field id (or any other fields that are involved in you select):
CREATE INDEX TBLINDEX ON TBL ( id )
And then, your query to lock ONLY the rows that you read is:
SELECT * FROM TBL WITH (UPDLOCK, INDEX(TBLINDEX)) WHERE id=10.
If you don't use the INDEX(TBLINDEX) option, SQLSERVER needs to read all rows from the beginning of the table to find your row with id=10, so those rows will be locked.
You cannot have snapshot isolation and blocking reads at the same time. The purpose of snapshot isolation is to prevent blocking reads.
perhaps making mvcc permanent could solve it (as opposed to specific batch only: SET TRANSACTION ISOLATION LEVEL SNAPSHOT):
ALTER DATABASE yourDbNameHere SET READ_COMMITTED_SNAPSHOT ON;
[EDIT: October 14]
After reading this: Better concurrency in Oracle than SQL Server? and this: http://msdn.microsoft.com/en-us/library/ms175095.aspx
When the READ_COMMITTED_SNAPSHOT
database option is set ON, the
mechanisms used to support the option
are activated immediately. When
setting the READ_COMMITTED_SNAPSHOT
option, only the connection executing
the ALTER DATABASE command is allowed
in the database. There must be no
other open connection in the database
until ALTER DATABASE is complete. The
database does not have to be in
single-user mode.
i've come to conclusion that you need to set two flags in order to activate mssql's MVCC permanently on a given database:
ALTER DATABASE yourDbNameHere SET ALLOW_SNAPSHOT_ISOLATION ON;
ALTER DATABASE yourDbNameHere SET READ_COMMITTED_SNAPSHOT ON;
Try (updlock, rowlock)
The full answer could delve into the internals of the DBMS. It depends on how the query engine (which executes the query plan generated by the SQL optimizer) operates.
However, one possible explanation (applicable to at least some versions of some DBMS - not necessarily to MS SQL Server) is that there is no index on the ID column, so any process trying to work a query with 'WHERE id = ?' in it ends up doing a sequential scan of the table, and that sequential scan hits the lock which your process applied. You can also run into problems if the DBMS applies page-level locking by default; locking one row locks the entire page and all the rows on that page.
There are some ways you could debunk this as the source of trouble. Look at the query plan; study the indexes; try your SELECT with ID of 1000000 instead of 1 and see whether other processes are still blocked.
OK, a single select wil by default use "Read Committed" transaction isolation which locks and therefore stops writes to that set. You can change the transaction isolation level with
Set Transaction Isolation Level { Read Uncommitted | Read Committed | Repeatable Read | Serializable }
Begin Tran
Select ...
Commit Tran
These are explained in detail in SQL Server BOL
Your next problem is that by default SQL Server 2K5 will escalate the locks if you have more than ~2500 locks or use more than 40% of 'normal' memory in the lock transaction. The escalation goes to page, then table lock
You can switch this escalation off by setting "trace flag" 1211t, see BOL for more information
Create a fake update to enforce the rowlock.
UPDATE <tablename> (ROWLOCK) SET <somecolumn> = <somecolumn> WHERE id=1
If that's not locking your row, god knows what will.
After this "UPDATE" you can do your SELECT (ROWLOCK) and subsequent updates.
I'm assuming you don't want any other session to be able to read the row while this specific query is running...
Wrapping your SELECT in a transaction while using WITH (XLOCK,READPAST) locking hint will get the results you want. Just make sure those other concurrent reads are NOT using WITH (NOLOCK). READPAST allows other sessions to perform the same SELECT but on other rows.
BEGIN TRAN
SELECT *
FROM <tablename> WITH (XLOCK,READPAST)
WHERE RowId = #SomeId
-- Do SOMETHING
UPDATE <tablename>
SET <column>=#somevalue
WHERE RowId=#SomeId
COMMIT
Question - is this case proven to be the result of lock escalation (i.e. if you trace with profiler for lock escalation events, is that definitely what is happening to cause the blocking)? If so, there is a full explanation and a (rather extreme) workaround by enabling a trace flag at the instance level to prevent lock escalation. See http://support.microsoft.com/kb/323630 trace flag 1211
But, that will likely have unintended side effects.
If you are deliberately locking a row and keeping it locked for an extended period, then using the internal locking mechanism for transactions isn't the best method (in SQL Server at least). All the optimization in SQL Server is geared toward short transactions - get in, make an update, get out. That's the reason for lock escalation in the first place.
So if the intent is to "check out" a row for a prolonged period, instead of transactional locking it's best to use a column with values and a plain ol' update statement to flag the rows as locked or not.
Application locks are one way to roll your own locking with custom granularity while avoiding "helpful" lock escalation. See sp_getapplock.
Try using:
SELECT * FROM <tablename> WITH ROWLOCK XLOCK HOLDLOCK
This should make the lock exclusive and hold it for the duration of the transaction.
According to this article, the solution is to use the WITH(REPEATABLEREAD) hint.
Revisit all your queries, maybe you have some query that select without ROWLOCK/FOR UPDATE hint from the same table you have SELECT FOR UPDATE.
MSSQL often escalates those row locks to page-level locks (even table-level locks, if you don't have index on field you are querying), see this explanation. Since you ask for FOR UPDATE, i could assume that you need transacion-level(e.g. financial, inventory, etc) robustness. So the advice on that site is not applicable to your problem. It's just an insight why MSSQL escalates locks.
If you are already using MSSQL 2005(and up), they are MVCC-based, i think you should have no problem with row-level lock using ROWLOCK/UPDLOCK hint. But if you are already using MSSQL 2005 and up, try to check some of your queries which query the same table you want to FOR UPDATE if they escalate locks by checking the fields on their WHERE clause if they have index.
P.S.
I'm using PostgreSQL, it also uses MVCC have FOR UPDATE, i don't encounter same problem. Lock escalations is what MVCC solves, so i would be surprised if MSSQL 2005 still escalate locks on table with WHERE clauses that doesn't have index on its fields. If that(lock escalation) is still the case for MSSQL 2005, try to check the fields on WHERE clauses if they have index.
Disclaimer: my last use of MSSQL is version 2000 only.
You have to deal with the exception at commit time and repeat the transaction.
I solved the rowlock problem in a completely different way. I realized that sql server was not able to manage such a lock in a satisfying way. I choosed to solve this from a programatically point of view by the use of a mutex... waitForLock... releaseLock...
Have you tried READPAST?
I've used UPDLOCK and READPAST together when treating a table like a queue.
How about trying to do a simple update on this row first (without really changing any data)? After that you can proceed with the row like in was selected for update.
UPDATE dbo.Customer SET FieldForLock = FieldForLock WHERE CustomerID = #CustomerID
/* do whatever you want */
Edit: you should wrap it in a transaction of course
Edit 2: another solution is to use SERIALIZABLE isolation level