Blocking or sleeping an interrupt handler - interrupt-handling

Assume:
1) Multi-cpu environment
2) Process that gets interrupted, is the same process that executes the interrupt handler, so I guess technically nothing gets interrupted except what the process was doing before, but it is still executing as it is executing the handler.
3) There is no top or bottom half, when an interrupt takes place the handler is invoked, executes, then return from interrupt, simple as that.
Why would sleeping the handler (puts in sleep queue, context switch to next runnable process) be a bad idea?

Pls refer to Why kernel code/thread executing in interrupt context cannot sleep?
I just posted answer. Hope it makes sense for you.

Related

when I quit my application, how to ensure ongoing threads are not interrupted at a bad moment?

I'm new to threading, so there are a few things I'm trying to grasp correctly.
I have a windows form application that uses threading to keep my UI responsive while some server shenanigans are going on.
My question is: when I quit my application, what happens to ongoing threads? Will they run to completion or will the abruptly be interrupted?
If they are interrupted, what can I do to make sure they at least don't get interrupted in such a way that would corrupt data on my server (force them to run to a safe place in the code where I know it's ok to interrupt the execution)
You will want to keep a reference of said threads, and call .Abort() on them when you want to terminate. Then you put your thread's code in a try/catch block and handle ThreadAbortException's. This will let you clean up what you are doing and terminate the thread cleanly at your own pace. In the main thread, after you called .Abort(), you just wait until the thread is no longer running (by polling the .IsAlive property of the Thread object) and close your application afterwards.
A thread needs a process to run in. The process won't be able to terminate if you don't terminate all the non-background threads you have started. Threads marked as background thread will be aborted.
So, the behavior is entirely up to your implementation. If you want to close the application, you could wait for all threads to terminate by themself, you could set an event to ask them to terminate and wait or you could just kill the threads.
The UI thread will terminate by itself because it runs a messageloop that stops when requested by the operating system, also see wikipedia and this answer.

what's different between the Blocked and Busy Waiting?

I known the implement of Busy Waiting. it's a death loop like this:
//main thread
while (true) {
msg = msgQueue.next();
msg.runnable.run();
}
//....msg queue
public Message next() {
while (true) {
if (!queue.isEmpty()) {
return queue.dequeue();
}
}
}
so, the method "next()" just looks like blocked, actually it runs all the time.
this was called "busy waiting" on book.
and what's the "process blocked"? what about its implement details?
is a death loop too? or some others? like signal mechanism?
For instance:
cat xxx | grep "abc"
process "cat" read a file and output them.
process "grep" waiting for input from "cat".
so before the "cat" output data, "grep" should be blocked, waiting for input and go on.
what details about this "blocked", a death loop read the input stream all the time? or really stop running, waiting a signal to wake up it to run?
The difference is basically in what happens to the process:
1. Busy Waiting
A process that is busy waiting is essentially continuously running, asking "Are we there yet? Are we there yet? How about now, are we there yet?" which consumes 100% of CPU cycles with this question:
bool are_we_there = false;
while(!are_we_there)
{
// ask if we're there (without blocking)
are_we_there = ask_if_we_are_there();
}
2. A process that is blocked (or that blocks)
A process that is blocked is suspended by the operating system and will be automatically notified when the data that it is waiting on becomes available. This cannot be accomplished without assistance from the operating system.
And example is a process that is waiting for a long-running I/O operation, or waiting for a timer to expire:
// use a system call to create a waitable timer
var timer = CreateWaitableTime()
// use another system call that waits on a waitable object
WaitFor(timer); // this will block the current thread until the timer is signaled
// .. some time in the future, the timer might expire and it's object will be signaled
// causing the WaitFor(timer) call to resume operation
UPDATE
Waitable objects may be implemented in different ways at the operating system level, but generally it's probably going to be a combination of hardware timers, interrupts and lists of waitable objects that are registered with the operating system by client code. When an interrupt occurs, the operating system's interrupt handler is called which in turn will scan though any waitable objects associated with that event, and invoke certain callback which in turn will eventually signal the waitable objects (put them in a signaled state). This is an over-simplification but if you'd like to learn more you could read up on interrupts and hardware timers.
When you say "a process is blocked" you actually mean "a thread is blocked" because those are the only schedulable entities getting CPU time. When a thread is busy waiting, it wastes CPU time in a loop. When a thread is blocked, the kernel code inside the system call sees that data or lock is not immediately available so it marks the thread as waiting. It then jumps to the scheduler which picks up another thread ready for execution. Such a code in a blocking system call might look like this:
100: if (data_available()) {
101: return;
102: } else {
103: jump_to_scheduler();
104: }
Later on the thread is rescheduled and restarts at line 100 but it immediately gets to the else branch and gets off the CPU again. When data becomes available, the system call finally returns.
Don't take this verbatim, it's my guess based on what I know about operating systems, but you should get the idea.

What happens when a thread makes kernel disable the interrupts and then that thread goes to sleep

I have this kernel code where I disable the interrupt to make this lock acquire operation atomic, but if u see the last else condition i.e. when lock is not available thread goes to sleep and interrupts are enable only after thread comes back from sleep. My question is so interrupts are disabled for whole OS until this thread comes out of sleep?
void Lock::Acquire()
{
IntStatus oldLevel = interrupt->SetLevel(IntOff); // Disabling the interrups to make the following statements atomic
if(lockOwnerThread == currentThread) //Checking if the requesting thread already owns lock
{
//printf("SM:error:%s already owns the lock\n",currentThread->getName());
DEBUG('z', "SM:error:%s already owns the lock\n",currentThread->getName());
(void) interrupt->SetLevel(oldLevel);
return;
}
if(lockOwnerThread==NULL)
{
lockOwnerThread = currentThread; // Lock owner ship is given to current thread
DEBUG('z', "SM:The ownership of the lock %s is given to %s \n",name,currentThread->getName());
}
else
{
DEBUG('z', "SM:Adding thread %s to request queue and putting it to sleep\n",currentThread->getName());
queueForLock->Append((void *)currentThread); // Lock is busy so add the thread to queue;
currentThread->Sleep(); // And go to sleep
}
(void) interrupt->SetLevel(oldLevel); // Enable the interrupts
}
I don't know the NACHOS and I would not make any assumptions on my own. So you have to test it.
The idea is simple. If this interrupt enable/disable functionality is local to the current process context then the following should happen when you call Sleep():
the process is marked as not-running, i.e. it is excluded from the list of processes the scheduler will consider to give a CPU time. Then the Sleep() function enforces the scheduler to do it's regular work - to find a process to run. If the list of running processes is not empty, the scheduler picks up a next available process and makes a context switch to this process. After this the state of interrupt management is restored from this new context.
If there are no processes to run then scheduler enters the Idle loop state and usually enables the interrupts. While the scheduler is in Idle loop it continues to poll the queue of the running processes until it get something to schedule.
Your process will get the control when it will be marked as running again. This could happen if some other process calls WakeUp() (or a like, as I mentioned the API is unknown to me)
When the scheduler will pick up your process to switch to it performs the usual (for your system) context switch that has the interrupts enabled flag set to false, so the execution continues at statement after the Sleep() call with interrupts disabled.
If the assumptions above are incorrect and the interrupts enabled flag is global, then there are two possibilities: either the system hangs as it can't serve the interrupts, or it has some workaround for such a situations.
So, you need to try. The best way is to read the kernel sources of course, if you have the access.))

Cancel thread with read() operation on serial port

in my Cocoa project, I communicate with a device connected to a serial port. Now, I am waiting for the serial device to send a particular message of some bytes. For the read operation (and the reaction for once the desired message has been received), I created a new thread. On user request, I want to be able to cancel the thread.
As Apple suggests in the docs, I added a flag to the thread dictionary, periodically check if the flag has been set and if so, call [NSThread exit]. This works fine.
Now, the thread may be stuck waiting for the serial device to finally send the 12 byte message. The read call looks like this:
numBytes = read(fileDescriptor, buffer, 12);
Once the thread starts reading from the device, but no data comes in, I can set the flag to tell the thread to finish, but the thread is not going to read the flag unless it finally received at least 12 bytes of data and continues processing.
Is there a way to kill a thread that currently performs a read operation on a serial device?
Edit for clarification:
I do not insist in creating a separate thread for the I/O operations with the serial device. If there is a way to encapsulate the operations such that I am able to "kill" them if the user presses a cancel button, I am perfectly happy.
I am developing a Cocoa application for desktop Mac OS X, so no restrictions regarding mobile devices and their capabilities apply.
A workaround would be to make the read function return immediately if there are no bytes to read. How can I do this?
Use select or poll with a timeout to detect when the descriptor is ready for reading.
Set the timeout to (say) half a second and call it in a loop while checking to see if your thread should exit.
Asynchronous thread cancellation is almost always a bad idea. Try to stick with event-driven interfaces (and, if necessary, timeouts).
This is exactly what the pthread_cancel interface was designed for. You'll want to wrap the block with read in pthread_cleanup_push and pthread_cleanup_pop in order that you can safely clean up if the thread is cancelled, and also disable cancellation (with pthread_setcancelstate) in other code that runs in this thread that you don't want to be cancellable. This can be a pain if proper cleanup would involve multiple call frames; it essentially forces you to use pthread_cleanup_push at every call level and structure your thread code like C++ or Java with try/catch style exception handling.
An alternative approach would be to install a signal handler for an otherwise-unused signal (like SIGUSR1 or one of the realtime signals) without the SA_RESTART flag, so that it interrupts syscalls with EINTR. The signal handler itself can be a complete no-op; the only purpose of it is to interrupt things. Then you can use pthread_kill to interrupt the read (or any other syscall) in a particular thread. This has the advantage that you don't have to switch your code to using C++/Java-type idioms. You can handle the EINTR error by checking a flag (indicating whether the thread was requested to abort) and resume the read if the flag is not set, or return an error code that causes the caller to clean up and eventually pthread_exit.
If you do use interrupting signal handlers, make sure all your syscalls that can return EINTR are wrapped in loops that retry (or check the abort flag and optionally retry) on EINTR. Otherwise things can break badly.

Make Thread sleep first before it runs

How can I make my thread sleep first before it runs? I know how to get sleep to work, however, whenever my program is run, the thread immediately runs. I want it to WAIT once it is first created to start running. (I am using handlers)
You cannot control when threads are scheduled. If you want it to go to sleep, have the first statement in the thread subroutine do a wait on a condition or something like that and when you are ready you can broadcast to that condition. In pseudo-code:
get-lock
if (we-are-still-supposed-to-sleep)
pthread_cond_wait()
release-lock
I suppose you could have the parent hold the lock while creating the children and then all they have to do is:
get-lock
release-lock
and avoid the condition thing.
What OS? Windoze allows you to create threads in a suspended state. When you have loaded up the thread fields in the ctor, you can resume the thread. Failing that, pass some synchro object in the thread start parameter for the new thread to wait on.
Rgds,
Martin.