OpenKinect Maturity - kinect

I'm interested in writing some homebrew code for the Microsoft Kinect console. I have a few applications which I think would translate well to the platform. I've been toying with the idea of giving it a shot using the OpenKinect drivers and libraries. Obviously this would be a lot of work, but I am wondering just how much. Does anyone have experience with OpenKinect? Do you get only the raw video/audio data from the device, or has anyone written higher level abstractions to make common tasks easier?

The OpenKinect library is basically a driver — at least for now — so don't expect much high functions from it. You will more or less get the raw data from both the depth and the video cameras.
This is basically an array received in a callback function each time a frame arrives.
You can give it a try by following the instructions provided on the OpenKinect website, it's really quick to install and try it, and you can play a bit with the glview application provided to get a feeling of what's possible.
I've set up a few demos using opencv, and got pretty cool results even though I didn't have much background in computer vision so I can only encourage you to try it yourself!
Alternately, if you're looking for more advanced functions, the OpenNI framework was just released this week and provides some impressive high level algorithms such as skeleton tracking and some gesture recognition. Part of the framework is proprietary algorithms from PrimeSense (like the powerful skeleton tracking module...). I haven't tried it yet and don't know how well it integrates with the kinect and the different OS, but since a bunch of guys from different groups (OpenKinect, Willow Garage...) are working hard on it that shouldn't be an issue within a week.

Elaborating further on what Jules Olleon wrote, i've worked with OpenNI (http://www.openni.org) and the algorithms above it (NITE), and I highly recommend using these frameworks. Both frameworks are well-documented, and come with numerous samples from which you can start out.
Basically, OpenNI abstracts the lower-level details of working with the sensor and its driver for you, and gives you a convenient way to get what you want from a "generator" (e.g. xn::DepthGenerator for getting the raw depth data). OpenNI is open-source and free to use in any application. OpenNI also handles the platform-abstraction for you. As of today, OpenNI is supported and works fine for Windows 32/64 and linux, and is in the process of being ported to OSX. Bindings are available for use in multiple programming languages (C, C++, .NET, Python, and a few others I believe).
NITE has additional interfaces built above OpenNI, which give you higher-level results (e.g. track a hand-point, skeletons, scene analysis etc). You'll want to check the subtleties of NITE's license regarding when/where you can use it, but it's still probably the easiest and fastest way to get analysis (e.g. skeleton) for now. NITE is closed-source, so PrimeSense need to supply a binary version for you to use. Currently windows and linux versions are available.

I haven't worked with with OpenKinect but I've been working with OpenNI and SensorKinect for a few months now for my research. If you are planning to work with raw data from Kinect, they work great in giving you depth and video (they don't support motor control). I've used it with C++ and OpenGL in both Windows 64bit and Ubuntu 32bit with almost no modifications to the code. It's very easy to learn if you know basic c++. Installing it might be a little headache.
For more advanced features such as skeleton detection, gesture recognition, etc., I highly recommend using the middlewares such as NITE with OpenNI or the ones provided in here: Middlewares developed around OpenNI rather than re-inventing the wheel. Nite is also very easy to use once you have OpenNI working; e.g. joint recognition is something around 10-20 extra lines of code.
Something that I would recommend to my younger self would be to learn and work with a basic game engine (e.g. Unity) rather than directly with OpenGL. It would give you a lot better and more enjoyable graphics, less hassle and would also enable you to easily integrate your program with other tools such as PhysX. I haven't tried any, but I know there are some plugins for using Kinect drivers in Unity.

Related

Opening Kinect datasets and/or SDK Samples

I am very new to Kinect programming and am tasked to understand several methods for 3D point cloud stitching using Kinect and OpenCV. While waiting for the Kinect sensor to be shipped over, I am trying to run the SDK samples on some data sets.
I am really clueless as to where to start now, so I downloaded some datasets here, and do not understand how I am supposed to view/parse these datasets. I tried running the Kinect SDK Samples (DepthBasic-D2D) in Visual Studio but the only thing that appears is a white screen with a screenshot button.
There seems to be very little documentation with regards to how all these things work, so I would appreciate if anyone can point me to the right resources on how to obtain and parse depth maps, or how to get the SDK Samples work.
The Point Cloud Library (or PCL) it is a good starting point to handle point cloud data obtained using Kinect and OpenNI driver.
OpenNI is, among other things, an open-source software that provides an API to communicate with vision and audio sensor devices (such as the Kinect). Using OpenNI you can access to the raw data acquired with your Kinect and use it as a input for your PCL software that can process the data. In other words, OpenNI is an alternative to the official KinectSDK, compatible with many more devices, and with great support and tutorials!
There are plenty of tutorials out there like this, this and these.
Also, this question is highly related.

Official Kinect SDK vs. Open-source alternatives

Where do they differ?
What are the advantages of choosing libfreenect or OpenNI+SensorKinect, for example, over the Official SDK, and vice-versa?
What are the disadvantages?
Please note that the below answer is per date and some facts may very well be outdated in the near future. Current state of the Official Kinect SDK is beta 1.00.12.
The first obvious difference is that the official SDK is maintained by the Microsoft Research team while OpenKinect is an open source SDK maintained by the open source community. Both has its cons and pros.
The Official SDK is developed by Microsoft which also develops the hardware and therefore should know internal information about the device that the open source society must reverse engineer. Obviously this is to Microsoft's advantage.
Microsoft is pouring a lot of money into this device and I am sure that they will do what they feel is necessary to keep their SDK up to par. Having economy behind it gives many advantages.
On the other hand, never underestimate the force of the open source society: "The OpenKinect community consists of over 2000 members contributing their time and code to the Project. Our members have joined this Project with the mission of creating the best possible suite of applications for the Kinect. OpenKinect is a true "open source" community!" - http://openkinect.org/wiki/Main_Page.
OpenKinect was released long before the official SDK as the kinect device was hacked on the first or second day of its release. Kudos to OpenKinect!
Programming languages supported:
Official SDK: C++, C#, or Visual Basic by using Microsoft Visual Studio 2010.
OpenKinect: Python, C, C++, C#, Java, Lisp and more! Obviously not requiring Visual Studio.
Operating systems support:
Official SDK: only installs on Windows 7.
OpenKinect: runs on Linux, OS X and Windows
Clearly advantage OpenKinect.
License:
The Official SDK is in its current beta state only for testing. The SDK has been developed specifically to encourage wide exploration and experimentation by academic, research and enthusiast communities. commercial applications are not permitted. Note however that this will probably change in future releases of the SDK. Visit the FAQ for more information
OpenKinect appers to be open for commercial usage, but online sources state that it may not be that simple. I would take a good look at the terms before releasing any commercial apps with it. Read Kinect – Licensing implications of open hardware projects for more info.
Documentation and support:
Official SDK: well documented and provides a support forum
OpenKinect: appears to have a mailing list, twitter and irc. but no official forum/QA? Documentation on website is not as rich as I would like it to be.
Device calibration:
Different Kinect devices may differ slightly depending on the batch that they were produced in. Thus device calibration is sometimes required. But:
the Official SDK does not provide any calibration settings but I have so far not had to calibrate the device I am working on. According to something I read online (link lost) at production time the calibration parameters are written to the kinect device, so with the Official SDK calibration is not needed.
OpenKinect features device calibration: http://openkinect.org/wiki/Calibration. Thus I believe that you should calibrate your device if you go with OpenKinect.
If its true that calibration is only needed for OpenKinect that is a big advantage for the official SDK as it is easier to distribute and install applications without such need.
Personally, after a failed try with the OpenKinect SDK I went with the official SDK, which
came with drivers that installed out of the box
came with examples and code for easy getting into business
All-in-all: I could start my own development within 15 minutes or so.
Now, after working with the Kinect for a few months, I have to say that I am quite satisfied with the API provided. I cannot however compare it to the OpenKinect SDK as I in fact never got it working (but perhaps it didn't give it a fair try).
UPDATE: As of February 1st 2012 there is a commercial license for the official SDK:
"The commercial license for this release authorizes development and distribution of commercial applications. The prior SDK was a beta, and as a result was appropriate only for research, testing and experimentation, and was not suitable for use with a final, commercial product. The new license will enable developers to create and sell their Kinect for Windows applications to end user customers using Kinect for Windows hardware on Windows platforms."
Developer Frequently Asked Questions
As explained by Avada Kedavra in his/her answer, these are some interesting differences:
supported operating systems: you can only use Microsoft SDK on Windows, while open source solutions are usually able to work on other operating systems;
programming languages: you have a wider choice with open source solutions, while Microsoft only supports C++ and C# (Visual Basic is no more supported with SDK 2.0);
documentation and support: Microsoft offer a good forum and a well done documentation (with a lot of samples); but there are several open source solution well documented;
license: Microsoft is less or more proprietary, open source is less or more free. Consider also that open source ideas have sometimes been bought by big companies, and transformed in something that is no more open. Probably yours will not be the case, but keep in mind this additional eventuality.
In my personal opinion, the most significant difference between open source solutions and Microsoft SDKs is strictly related to the skeletal tracking algorithm.
While depth and RGB data can be effectively provided by both open/free APIs and Microsoft SDKs, implementing skeletal tracking capabilities is not only a matter of reverse engineering.
To implement such an algorithm, developers must have strong competences in pattern recognition and machine learning areas, and I am quite sure that such kind of knowledge is available among the open source community. But the implementation of skeletal tracking is based on a "trained" algorithm, that requires a lot of experiments to collect very large amount of data. These data are then used to "train" the algorithm, that can recognize the skeletal joints.
Getting enough data, but also adjusting and properly using them, requires a lot of time and money. Microsoft researchers and developers are in the best conditions to work on this kind of stuff, simply because it is their job.
In my previous experiences, I noticed that open source solutions provide good skeletal tracking capabilities, but they are not at the same level of what Microsoft offers with its SDK.
Remember also that Microsoft SDK provide a lot of additional capabilities, like facial recognition or joint orientation, and several widgets very useful if you want to fastly build a gestural GUI.
So what I suggest is: if you are working on a project in which you simply need depth and/or RGB data, or if you have the necessity to use a programming language that is not supported by Microsoft SDK, then you should opt for open source solution. Otherwise, Microsoft SDK would be my best choice.
I would strongly recommend the Cinder framework. (libcinder.org)
It supports both OpenNI and Kinect develoment, if you're using C++. It now supports Kinect SDK 1.7 and OpenNI 2, via these Cinderblocks:
MS Kinect SDK 1.7 (stable)
https://github.com/BanTheRewind/Cinder-MsKinect
OpenNI 2 / NITE 2.2 (alpha)
https://github.com/wieden-kennedy/Cinder-OpenNI
Both can do skeletal tracking out of the boz, OpenNI being capable of tracking up to six skeletons simultaneously. OpenNI 2 is gaining rapidly on the Kinect, although the new Kinect will probably change that when it comes out next month. However the basic underlying principles are unlikely to change.
The main drawback with the initial release of OpenNI was that it required a full body activation pose to recognise a user, which was a deal breaker for a lot of applications - however this seems to have been solved in the newer versions and OpenNI 2 also supports robust hand tracking at close range, although it still requires a focus gesture initially. If you work on Mac or Linux, it's pretty much your only choice.

embedded application

In the last two months I've worked as a simple application using a computer vision library(OpenCV).
I wish to run that application directly from the webcam without the need of an OS. I'm curious to know if that my application can be burned into a chip in order to not have the OS to run it.
Ofcorse the process can be expensive, but I'm just curious. Do you have any links about that?
ps: the application is written in C.
I'd use something bigger than a PIC, for example a small 32 bit ARM processor.
Yes. It is theoretically possible to port your app to PIC chips.
But...
There are C compilers for the PIC chip, however, due to the limitations of a microcontroller, you might find that the compiler, and the microcontroller itself is far too limited for computer vision work, especially if your initial implementation of the app was done on a full-blown PC:
You'll only have integer math available to you, in most cases, if not all (can't quote me on that, but our devs at work don't have floating point math for their PIC apps and it causes many foul words to emanate from their cubes). Either that, or you'll need to hook to an external math coprocessor.
You'll have to figure out how to get the PIC chip to talk USB to the camera. I know this is possible, but it will require additional hardware, and R&D time.
If you need strict timing control,
you might even have to program the
app in assembler.
You'd have to port portions of OpenCV to the PIC chip, if it hasn't been already. My guess is not.
If your'e not already familiar with microcontroller programming, you'll need some time to get up to speed on the differences between desktop PC programming and microcontroller programming, and you'll have to gain some experience in that. This may not be an issue for you.
Basically, it would probably be best to re-write the whole program from scratch given a PIC chip constraint. Good thing is though, you've done a lot of design work already. It would mainly be hardware/porting work.
OR...
You could try using a small embedded x86 single-board PC, perhaps in the PC/104 form factor, with your OS/app on a CF card. It's a real bone fide PC, you just add your software. Good thing is, you probably wouldn't have to re-write your app, unless it had ridiculous memory footprint. Embedded PC vendors are starting to ship boards based on 1 GHz Intel Atoms, and if you needed more help you could perhaps hook a daughterboard onto the PC-104 bus. You'll work around all of the limitations listed above, as your using an equivalent platform to the PC you developed your app on. And it has USB ports! If you do a thorough cost analysis and if your'e cool with a larger form factor, you might find it to be cheaper/quicker to use a system based on a SBC than rolling a solution using PIC chips/microcontrollers.
A quick search of PC-104 on Google would reveal many vendors of SBCs.
OR...
And this would be really cheap - just get a off-the-shelf cheap Netbook, overwrite the OEM OS, and run the code on there. Hackish, but cheap, and really easy - your hardware issues would be resolved within a week.
Just some ideas.
I think you'll find this might grow into pretty large project.
It's obviously possible to implement a stand-alone hardware solution to do something like this. Off the top of my head, Rabbit's solutions might get you to the finish-line faster. But you might be able to find some home-grown Beagle Board or Gumstix projects as well.
Two Google links I wanted to emphasize:
Rabbit: "Camera Interface Application Kit"
Gumstix: "Connecting a CMOS camera to a Gumstix Connex motherboard"
I would second Nate's recommendation to take a look at Rabbit's core modules.
Also, GHIElectronics has a product called the Embedded Master that runs .Net MicroFramework and has USB host/device capabilities built-in as well as a rich library that is a subset of the .Net framework. It runs on an Arm processor and is fairly inexpensive (> $85). Though not nearly as cheap as a single PIC chip it does come with a lot of glue logic pre-built onto the module.
CMUCam
I think you should have a look at the CMUcam project, which offers affordable hardware and an image processing library which runs on their hardware.

starting a microcontroller simulator/emulator

I would like to create/start a simulator for the following microcontroller board: http://www.sparkfun.com/commerce/product_info.php?products_id=707#
The firmware is written in assembly so I'm looking for some pointers on how one would go about simulating the inputs that the hardware would receive and then the simulator would respond to the outputs from the firmware. (which would also require running the firmware in the simulated environment).
Any pointers on how to start?
Thanks
Chris
Writing a whole emulator is going to be a real challenge. I've attempted to write an ARM emulator before, and let me tell you, it's not a small project. You're going to either have to emulate the entire CPU core, or find one that's already written.
You'll also need to figure out how all the IO works. There may be docs from sparkfun about that board, but you'll need to write a memory manager if it uses MMIO, etc.
The concept of an emulator isn't that far away from an interpreter, really. You need to interpret the firmware code, and basically follow along with the instructions.
I would recommend a good interactive debugger instead of tackling an emulator. The chances of destroying the hardware is low, but really, would you rather buy a new board or spend 9 months writing something that won't implement the entire system?
It's likely that the PIC 18F2520 already has an emulator core written for it, but you'll need to delve into all the hardware specs to see how all the IO is mapped still. If you're feeling up to it, it would be a good project, but I would consider just using a remote debugger instead.
You'll have to write a PIC simulator and then emulate the IO functionality of the ports.
To be honest, it looks like its designed as a dev kit - I wouldn't worry about your code destroying the device if you take care. Unless this a runner-up for an enterprise package, I would seriously question the ROI on writing a sim.
Is there a particular reason to make an emulator/simulator, vs. just using the real thing?
The board is inexpensive; Microchip now has the RealICE debugger which is quite a bit more responsive than the old ICD2 "hockey puck".
Microchip's MPLAB already has a built-in simulator. It won't simulate the whole board for you, but it will handle the 18F2520. You can sort of use input test vectors & log output files, I've done this before with a different Microchip IC and it was doable but kinda cumbersome. I would suggest you take the unit-testing approach and modularize the way you do things; figure out your test inputs and expected outputs for a manageable piece of the system.
It's likely that the PIC 18F2520 already has an emulator core written for it,
An open source, cross-platform simulator for microchip/PICs is available under the name of "gpsim".
It's extremely unlikely that a bug in your code could damage the physical circuitry. If that's possible, then it is either a bug in the board design or it should be very clearly documented.
If I may offer you a suggestion from many years of experience working with these devices: don't program them in assembly. You will go insane. Use C or BASIC or some higher-level language. Microchip produces a C compiler for most of their chips (dunno about this one), and other companies produce them as well.
If you insist on using an emulator, I'm pretty sure Microchip makes an emulator for nearly every one of their microcontrollers (at least one from each product line, which would probably be good enough). These emulators are not always cheap, and I'm unsure of their ability to accept complex external input.
If you still want to try writing your own, I think you'll find that emulating the PIC itself will be fairly straightforward -- the format of all the opcodes is well documented, as is the memory architecture, etc. It's going to be emulating the other devices on the board and the interconnections between them that will kill you. You might want to look into coding the interconnections between the components using a VHDL tool that will allow you to create custom simulations for the different components.
Isn't this a hardware-in-the-loop simulator problem? (e.g. http://www.embedded.com/15201692 )

Best platform for learning embedded programming? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
I'm looking to learn about embedded programming (in C mainly, but I hope to brush up on my ASM as well) and I was wondering what the best platform would be. I have some experience in using Atmel AVR's and programming them with the stk500 and found that to be relatively easy. I especially like AVR Studio and the debugger that lets you view that state of registers.
However, If I was to take the time to learn, I would rather learn about something that is prevalent in industry. I am thinking ARM, that is unless someone has a better suggestion.
I would also be looking for some reference material, I have found the books section on the ARM website and if one is a technically better book than another I would appreciate a heads up.
The last thing I would be looking for is a prototyping/programming board like the STK500 that has some buttons and so forth.
Thanks =]
"embedded programming" is a very broad term. AVR is pretty well in that category, but it's a step below ARM, in that it's both simpler to use, as well as less powerful.
If you just want to play around with ARM, buy a Nintendo DS or a Gameboy Advance. These are very cheap compared to the hardware inside (wonders of mass production), and they both have free development toolchains based off of gcc which can compile to them.
If you want to play around with embedded linux, BeagleBoard is looking to be a good option, only $150 and it has a ton of features.
Personally I think AVR is best for the smaller-sized 8-bit platforms, and ARM is best for the larger, more powerful 32-bit based platforms. Like many AVR fans, I don't like PIC. It just seems worse in pretty much every way. Also avoid anything that requires you to write any type of BASIC.
If you just want to play around with it, I'd suggest the Arduino platform (http://www.arduino.cc). It's based on the ATmega168 or ATmega8, depending on the version. It uses a C-like language and has its own IDE.
Myself I've worked in embedded programming for 9 years now and have experience on TI MSP430, Atmel AVR (a couple of flavours) and will be using an ARM soon.
My suggestion is to pickup something that has some extra features in the processor like ethernet controller and CAN controller, even get two or three if you can. Embedded devices are nice to work with, but once they can talk to other similar devices via CAN or get onto a network, they can become much more fun to play with.
ADI's Blackfin is another option since it's quite a straight forward architecture to program, yet can also do some fairly hefty DSP stuff should you choose to go down that route. It helps that the assembly language is quite sane too.
The Blackfin STAMP boards are an inexpensive (~$100 last I checked) way in, and they support the free GCC tools and uClinux.
Whatever architecture you choose I'd definitely recommend first downloading the toolchain\SDK and looking through the sample projects and tutorials - generally having a bit of a play about. You can often get quite acquainted with the architecture through simulation without even touching any hardware.
ARM has the nicest instruction set of the widely used embedded platforms, leaving you free to pick up the general principles of writing software for embedded platforms without getting bogged down in weird details like non-orthogonal registers or branch delay slots. There are plenty of emulators - ARM's own, while not free, is cycle-accurate; and a huge variety of programmable ARM-based hardware is cheap and easy to come by as well.
The TI MSP430 is a great platform for learning how to program microcontrollers. TI has a variety of FREE Tools and some cheap evaluation boards (starting at $20). Plus, it's a low-power, modern microcontroller.
A nice choice would be PIC18 by Microchip
It has quite alot of material, documentation, tutorials and projects on the internet
Free IDE and compiler.
you can pull your own flash writer in a few minutes.
(Although for a debugger to work you'll need to work harder)
If you're a student (or has a student email address) Microchip will send you free sample chips. So basically you can have a full development environment for close to nothing.
PICs are quite prevalent in the industry. Specifically as controllers for robots for some reason although they can do so much more.
Arduino seems to be the platform of choice these days for beginners although there are lots of others. I like the Olimex boards personally but they are not really for beginners.
Microchip's PIC range of CPUs are also excellent for beginners, especially if you want to program in assembler.
BTW, Assembler is not used as much as it used to. The general rule with embedded is if you've got 4k of memory or more, use C. You get portability and you can develop code faster.
I suppose it depends on your skill level and what you want to do with the chip. I usually choose which embedded chip to use by the available peripherals. If you want a USB port, find one with USB built in, if you want analogue-to-digital, find one with an ADC etc. If you've got a simple application, use an 8-bit but if you need serious number crunching, go 32 bits.
I'd like to suggest the beagleboard from TI. It has a Omap3 on it. That's a Cortex-A8 ARM11 CPU, a C64x+ DSP and a video accelerator as well.
The board does not need an expensive jtag device. A serial cable an an SD-Card is all you need to get started. Board costs only $150 and there is a very active community.
www.beagleboard.org
Your question sort of has been answered in this question.
To add to that, the embedded processor industry is very segmented, it doesn't have a major player like Intel/x86 is for the "desktop" processor industry. The ARM processor does have a large share, so does MIPS I believe, and there are many smaller more specific microcontroller like chips available (like the MSP430 etc from TI).
As for documentation, I do embedded development for a day job, and the documentation we have access to (as software developers) is rather sparse. Your best bet is to use the documentation available on the processor manufacturers site.
Take a look at Processing and the associated Arduino and Wiring boards.
If you just want to have fun, then try the Parallax Propeller chip. The HYDRA game platform looks like a blast. There's a $100 C compiler for it now.
I started on BASIC stamps, moved up through SX chips and PICs into 8051s, then 68332s, various DSPs, FPGA soft processors, etc.
8051s are more useful in the real world... the things won't go away. There's TONS of derivatives and crazy stuff for them. (Just stay away from the DS80C400) The energy industry is absolutely full of them.
Start with something tiny. If you have external RAM and plenty of registers... what's the difference between that and a SBC?
Many moons ago I've worked with 8-bitters like 68HC05 and Z80, later AVR and MSP430 (16-bit). However most recent projects were on ARM7. Several manufacturers offer ARM controllers, in all colors and sizes (well, not really color).
ARM(7) is replacing 8-bit architecture: it's more performant (32-bit RISC at faster instruction cycles than most 8-bitters), has more memory and is available with several IO-configurations.
I worked with NXP LPC2000 controllers, which are also inexpensive (< 1 USD for a 32-bitter!).
If you're in Europe http://www.olimex.com/dev/index.html has some nice low-cost development boards. Works in the rest of the world too :-)
For a fun project to test, have a look at xgamestation
But for a more industrial used one chip solution programming, look at PIC
For my Computer Architecture course I had to work with both a PIC and an AVR; in my opinion the PIC was easier to work with, but that's maybe because that's what we worked with the most and we had the most time to get used to. We used the AVR maybe only a couple of times so I couldn't get the hang of it perfectly but it also was nothing overly complicated, or at least not more frustrating than the other.
I think you can also order microprocessor samples from Microchip's website so you could also get started with that?
Second that:
Arduino platform http://www.arduino.cc
HTH
For learning, you can't go past the AVR. The chips are cheap and they'll run with zero external components - they also supply enough current to drive an LED straight from the port.
You can start with a cheap programmer such as lady-ada's USBTinyISP (USD$22 for a kit) which can power your board with 5V from the USB port. Get the free tools WinAVR (GCC based) and AVRStudio and get a small project working in no time.
Yes the AVRs have limitations - but developing software for microcontrollers is largely about managing resources and coping with those problems. It's unlikely that you'll experience problems such as running out of stack space, RAM or ROM when you're making hobbist projects for powerful ARM platforms.
That said, ARM is also a great platform which is widely used in the industry, however, for learning I highly recommend AVRs.
I would suggest Microchip's PIC18F series. I just started developing for them with the RealICE in-circuit emulator, but the pickit2 is a decent debugger for the price. You could say this for the AVR's also, but there is a large following for the device all over the web. I was able to have a - buggy, yet functional - embedded USB device running within days due to all the PIC related chatter.
The only thing I don't like about the PICs is that a lot of the sample code is VERY entwined into the demo boards. That can make it hard to tear out sections that you need and still have an application that will build and run for your application.
Texas Instruments has released a very interesting development kit at a very low price: The eZ430-Chronos Development Tool contains an MSP430 with display and various sensors in a sports watch, including a usb debug programmer and a usb radio access point for 50$
There is also a wiki containing lots and lots of information.
I have already created a stackexchange proposal for the eZ430-Chronos Kit.
You should try and learn from developpers kits provided by Embedded Artists. After you get the kit, check their instructional videos and videos provided by NXP, which are not as detailed as they could be, but they cover a lot of things. Problems with learning ARM as your first architecture and try to do something practicall are:
You need to buy dev. kit.
You need a good book to learn ARM assembly, because sooner or later you will come across ARM startup code, which is quite a deal for a beginner. The book i mentioned allso covers some C programming.
Combine book mentioned above with a user guide for your speciffic processor like this one. Make sure you get this as studying this in combination with above book is the only way to learn your ARM proc. in detail.
If you want to make a transfer from ARM assembly to C programming you will need to read this book, which covers a different ARM processor but is easier for C beginner. The down side is that it doesn't explain any ARM assembly, but this is why you need the first book.
There is no easy way.
mikroElektronika has nice ARM boards and C, Pascal and Basic compilers that might suite your demands.