boost::serialization polymorphic type initialization - serialization

I have a base class and 4 derived classes. I store all my derived classes in a vector of base class pointer type. During first initialization I create each derived type differently using their constructors. Basically they each have different param types in their ctors. (I had to provide a protected default ctor to make BOOST_CLASS_EXPORT compile but that's a different story). I don't/can't save all the members (filled in ctor) of these derived classes.
Now, when I load objects from the disk using boost::serialize, these members (that are not serialized and specific to each derived type) are destroyed. And, I cannot think of a way to re-initialize these derived types since I only store the base class pointers.
What exactly I need is being able to load my derived types (pointers) partially, without deleting all their content..
Is there a way to overcome this, a magic boost define or function call perhaps? Otherwise, polymorphism with boost::serialize is not possible at all.. I should be missing something and hope I could define my problem good enough.

You shouldn't need to create a default constructor just for serialization. You can instead have boost save/load the data needed by a non-default constructor, and use that to construct new objects when loading.
That way, whatever your constructors do to ensure the validity of data members can also happen during serialization, and the serialization library never has to manipulate the data members of your objects directly. This should prevent data erasure.
For example, if your class can be constructed using a name and a size, you could overload the functions as follows:
template <class Archive>
inline void save_construct_data(Archive & ar, const my_class * t, const unsigned int) {
ar << my_class->name();
ar << my_class->size();
}
template<class Archive>
inline void load_construct_data(Archive & ar, my_class * t, const unsigned int) {
std::string name;
int size;
ar >> name;
ar >> size;
::new(t)my_class(name, size); // placement 'new' using your regular constructor
}
Check out the docs here.

Related

When is a class a data class?

I know what classes are about, but for better understanding I need a use case. Recently I discovered the construct of data classes. I get the idea behind normal classes, but I cannot imagine a real use case for data classes.
When should I use a data class and when I use a "normal" class? For all I know, all classes keep data.
Can you provide a good example that distinguishes data classes from non-data classes?
A data class is used to store data. It's lighter than a normal class, and can be compared to an array with key/value (dictionary, hash, etc.), but represented as an object with fixed attributes. In kotlin, according to the documentation, that adds those attributes to the class:
equals()/hashCode() pair
toString() of the form "User(name=John, age=42)"
componentN() functions corresponding to the properties in their order of declaration.
copy() function
Also it has a different behavior during class inheritence :
If there are explicit implementations of equals(), hashCode(), or toString() in the data class body or final implementations in a
superclass, then these functions are not generated, and the existing
implementations are used.
If a supertype has componentN() functions that are open and return compatible types, the corresponding functions are generated for the
data class and override those of the supertype. If the functions of
the supertype cannot be overridden due to incompatible signatures or
due to their being final, an error is reported.
Providing explicit implementations for the componentN() and copy() functions is not allowed.
So in kotlin, if you want to describe an object (a data) then you may use a dataclass, but if you're creating a complex application and your class needs to have special behavior in the constructor, with inheritence or abstraction, then you should use a normal class.
I do not know Kotlin, but in Python, a dataclass can be seen as a structured dict. When you want to use a dict to store an object which has always the same attributes, then you should not put it in a dict but use a Dataclass.
The advantage with a normal class is that you don't need to declare the __init__ method, as it is "automatic" (inherited).
Example :
This is a normal class
class Apple:
def __init__(size:int, color:str, sweet:bool=True):
self.size = size
self.color = color
self.sweet = sweet
Same class as a dataclass
from dataclasses import dataclass
#dataclass
class Apple:
size: int
color: str
sweet: bool = True
Then the advantage compared to a dict is that you are sure of what attribute it has. Also it can contains methods.
The advantage over to a normal class is that it is simpler to declare and make the code lighter. We can see that the attributes keywords (e.g size) are repeated 3 times in a normal class, but appear only once in a dataclass.
The advantage of normal class also is that you can personalize the __init__ method, (in a dataclass also, but then you lose it's main advantage I think) example:
# You need only 2 variable to initialize your class
class Apple:
def __init__(size:int, color:str):
self.size = size
self.color = color
# But you get much more info from those two.
self.sweet = True if color == 'red' else False
self.weight = self.__compute_weight()
self.price = self.weight * PRICE_PER_GRAM
def __compute_weight(self):
# ...
return (self.size**2)*10 # That's a random example
Abstractly, a data class is a pure, inert information record that doesn’t require any special handling when copied or passed around, and it represents nothing more than what is contained in its fields; it has no identity of its own. A typical example is a point in 3D space:
data class Point3D(
val x: Double,
val y: Double,
val z: Double
)
As long as the values are valid, an instance of a data class is entirely interchangeable with its fields, and it can be put apart or rematerialized at will. Often there is even little use for encapsulation: users of the data class can just access the instance’s fields directly. The Kotlin language provides a number of convenience features when data classes are declared as such in your code, which are described in the documentation. Those are useful when for example building more complex data structures employing data classes: you can for example have a hashmap assign values to particular points in space, and then be able to look up the value using a newly-constructed Point3D.
val map = HashMap<Point3D, String>()
map.set(Point3D(3, 4, 5), "point of interest")
println(map.get(Point3D(3, 4, 5))) // prints "point of interest"
For an example of a class that is not a data class, take FileReader. Underneath, this class probably keeps some kind of file handle in a private field, which you can assume to be an integer (as it actually is on at least some platforms). But you cannot expect to store this integer in a database, have another process read that same integer from the database, reconstruct a FileReader from it and expect it to work. Passing file handles between processes requires more ceremony than that, if it is even possible on a given platform. That property makes FileReader not a data class. Many examples of non-data classes will be of this kind: any class whose instances represent transient, local resources like a network connection, a position within a file or a running process, cannot be a data class. Likewise, any class where different instances should not be considered equal even if they contain the same information is not a data class either.
From the comments, it sounds like your question is really about why non-data classes exist in Kotlin and why you would ever choose not to make a data class. Here are some reasons.
Data classes are a lot more restrictive than a regular class:
They have to have a primary constructor, and every parameter of the primary constructor has to be a property.
They cannot have an empty primary constructor.
They cannot be open so they cannot be subclassed.
Here are other reasons:
Sometimes you don't want a class to have a copy function. If a class holds onto some heavy state that is expensive to copy, maybe it shouldn't advertise that it should be copied by presenting a copy function.
Sometimes you want to use an instance of a class in a Set or as Map keys without two different instances being considered as equivalent just because their properties have the same values.
The features of data classes are useful specifically for simple data holders, so the drawbacks are often something you want to avoid.

Possibility of having "dynamically-binded" and "implicit" interface?

Is there any construct that allows all classes which implemented a set of functions to be considered as a certain interface, even when the classes themselves do not explicitly implement the interface?
To make the question clearer, I'll make an example. Suppose we want to implement LinearSearch, which look through the whole array and search for certain key, and return the index of the key upon discovery. Essentially, the psudeocode might look something like this:
LinearSearch(A, key)
for (k = 0; k < A.length(); k++)
if (A.get(k) == key)
return k
return NULL
In that case, any classes which implemented length and get will be able to search through the structure. We could implement this on DynamicArray, which acts the same as ArrayList in Java. We could implement this on a LinkedList, ignoring the fact the get takes linear time per query. Similarly for other structures that implement these 2 functions. However, such classes might not have explicitly implemented a common interface, even though it is favorable to have them being in one.
While writing this question, I feel a sense of insecurity tinkering within me about such a construct, but I cannot put it into words. So, is there any reason you think that this might not be a good construct in actual languages?
It's called "duck typing". Message-based object models like Smalltalk allow sending any message to an object as long as its name and parameters match.
In languages like C++, you can emulate this using "signals" and "slots", which, at their most primitive, can be implemented by writing a little template adapter class like
class CallGetLengthAdapterBase
{
public:
int length() = 0;
key_type key() = 0;
};
template<class N>
class CallGetLengthAdapter : public CallGetLengthAdapterBase
{
public:
CallGetLengthAdapter( N* obj ) { mObject = obj; };
int length() { return mObject->length(); };
key_type key() { return mObject->key(); };
protected:
N* mObject;
};
So the LinearSearch would just know about CallGetLengthAdapterBase, and would take a pointer to an object of this type. Whoever owns and connects both of these objects would call them like:
LinearSearch( CallGetLengthAdapter<A_type>(&A), key );
That's all.
From Wikipedia:
Go has "interface" types that are compatible with any type that supports a given set of methods (the type does not need to explicitly implement the interface). The empty interface, interface{}, is compatible with all types.
It sounds like this is what you mean, so it is another sense of interface than we might be used to from Java or such. This is a structural typing kind of interface, where the structure of methods involved are the important part, not a name given to the interface.
More formally, it seems that this is called a type class.

Why do we need a constructor in OOP?

I am new to OOP. I am still in a learning phase.
Why do we need constructors, When we can initialize the values of the properties (variables) by writing a "Initialize function"?
Basically why do we write a constructor when we can achieve the same results even by writing a function for initializing the variables?
The constructor IS the "Initialize function"
Rather than calling two functions
object = new Class;
object.initialize();
You just call
object = new Class();
The logic inside the constructor can be identical to the logic inside the initialize function, but it's much tidier and avoids you naming your function initialize(), me naming mine initialize_variables(), and someone else naming theirs init_vars()... consistency is useful.
If your constructor is very large, you may still wish to split variable initialisation into a separate function and calling that function from your constructor, but that's a specific exception to the scenario.
So answer is simple
Why do we write Constructor?
Because in C you can write,
int i;
if write like this In above case data type and variable defines if you define like this memory allocated for i variable.So simple here we define class name and variable name(object name) we can create memory allocated for class name.
Example
myClass objectName;
But in C++ new keyword is used for dynamic memory allocation, so this dynamic memory which we can allocate to our class but here my example myClass is our class and we want to allocate to dynamic memory allocated.
So
myClass objectName = new myClass();
and simply constructor is memory allocation for class variable is called the constructor.`
the role of the constructor is to initialize the variables/values.it is the "initialization function".The only reason i find on why we use a constructor instead of a normal function to initialize the variables is to stop different people from using different function names and avoid ambiguity and it is much more easier to use a constructor which is instantiated automatically as soon as the class is run,instead of having to write a separate code for instantiation.this may seem small and like something that doesn't require much work,but only for a very small program,for larger ones the struggle is real.
It is usual to put mandatory things into the constructor and optional ones into the Initialise function.
For example, consider an amplifier that requires a power source so that would be supplied to its constructor. Logically, you may want to turn it on and set its power level but one could argue that you might not want to do that until later. In pseudo-code:
class Amplifier
{
public Amplifier(PowerSource powerSource)
{
// create amplifier...
}
public int PowerLevel;
public void Initialise()
{
// turn on...
}
}
The example, above, is rather puerile but it illustrates the concepts at play. It is always an issue of design, however, and opinions do vary.
Some classes of object, however, will have to perform obvious set-up operations during their construction phase. In these cases, the requirement to have a constructor is very easy to understand. For example, if your object might require a variable amount of memory, the constructor would be a logical place to allocate it and the destructor or finaliser would be a logical place to free it up again.
Even if you don't use constructor it will call implicitly by your language translator whenever you create object.Why?
The reason is that it is used for object initialization means the variable(instance) which we declare inside our class get initialized to their default value.
class Person {
//Class have two parts
//1.Data(instance variable)
//2.Methods(Sub-routine)
String name;
int age;
}
public class Stack{
public static void main(String[] args){
Person person1 = new Person();
System.out.println("Name: "+person1.name);
System.out.println("Age: " + person1.age);
}
}
Output- Name: null
Age: 0
"null" and "0" are default values which are impicitly set by default constructor.
When we initialize a class by creating an instance or object the constructor is called automatically. This is very helpful when we need a huge amount of code to be executed every time we create an object.
The best use of constructor can be seen when we create a " graphical user interface". While building a GUI for an application we need to separate the code for designing the GUI and the business logic of the application. In such a case we can write the code for designing GUI, in a constructor and business logic in respective methods. This make the code tidy and neat too.
Also when an object is created the global variables can be initialized to their default values using constructor. If we don't initialize the global variables, then the compiler will do it implicitly by using the default constructor.
So constructor is a very wise concept which appears to be an idiosyncrasy at first but as you code further and more and more you will realize it's importance.
Because constructors are exactly for that: to avoid using an "initialize function"
Plus you can have have as many constructors as you want: you juste feed them some parameters, depending how you want to inialize your object.
Constructor is a special member function which has same name as class name and called whenever object of that class is created. They are used to initialize data field in object.
Constructor has following properties:
It has same name as class name.
It is called whenever object of a class is created.
It does not have return type not even void.
It can have parameters.
Constructor can be overloaded.
Default constructor is automatically created when compiler does not find any constructor in a class.
Parameterized constructor can call default constructor using this() method.
A constructor can be static for static data field initialization.
It is not implicitly inherited.
For More Info
https://en.wikipedia.org/wiki/Constructor_(object-oriented_programming)

Where is the definition of a class stored in memory as opposed to the instance?

This question is merely out of interest and trying to understand something about memory management in object-oriented languages. It is not specific to one language, but I just want to understand as a general principle.
What I want to know is how the definition of an object reference is stored compared to the instance of that reference.
When you define and object in OO source code, e.g. in Java, without instantiating it:
String s;
How does this get stored? How does the memory usage of this definition differ from when the object is actually instantiated:
s = new String("abc");
? Is there a general principle that applies to all OO languages in terms of how memory is allocated or do different language implementers use different techniques for allocating memory?
Normaly when we declare a refrence like String s; it is created as a normal variable just like int , float but this type of variable hold the memory address ( it similar concept as pointers in C language) but when we use s = new String("abc");, it creates an object in heap and assign that address to the reference variable s.
In Java byte code, all Objects are stored as Objects. Explicit type-checking is added when needed. So for example this Java function
public Integer getValue(Object number){
int i = ((Number) number).toInt();
return new Integer(i);
}
is translated to a bytecode like this:
(accepts java.lang.Object, returns java.lang.Integer)
-read the first argument as an Object
-if the value is not a Number, raise an exception
-call the virtual method toInt(java.lang.Integer) of the value
and remember the int result
-use the value as an int argument
-instantiate a new java.lang.Integer
-call the constructor(int) of java.lang.Integer on the new number,
getting an Object back
[since the declared return value of Number.toInt is the same
as the return value of our function, no type checking is needed]
-return the value
So, types of unused variables get stripped out by the compiler. Types of public and protected fields are stored with its class.
The runtime type of an Object is stored with the object. In C++, it is a pointer to the Virtual Method Table. In Java, it is as a 16-bit index into the table of all loaded classes.
The Java class file stores an index of all dependent classes in a similar table. Only the class names are stored here. All field descriptions then point to this table.
So, when you write String s = new String("abc") (or even String s = "abc"), your class stores:
it is dependent on the class java.lang.String in the table of dependencies
"abc" in the table of String literals
your method loading a String literal by ID
(in the first case) your method calling a constructor of its first dependent class (String) with the first dependent class (String) as an argument.
the compiler can prove storing the new String in a String variable is safe, so it skips the type checking.
A class can be loaded as soon as it is referenced, or as late as its first use (in which case it is refered to by its depending class and ID within the class). I think the latter is always the case nowadays.
When a class is loaded:
-its class loader is asked to retreive the class by its name.
-(in the case of the system loader) the class loader looks
for the corresponding file in the program JAR, in the system library
and in all libraries referenced.
-the byte stream is then decoded into a structure in memory
-(in the case of early loading) all dependent classes are loaded recursively
if not already loaded
-it is stored in the class table
-(in the case of late loading) its static initialiser is run
(possibly loading more classes in the process).
In C++, none of the class loading takes place, as all user classes and most libraries are stored in the program as a mere virtual method table and the corresponding method. All of the system functions (not classes) can still be stored in a DLL (in case of Windows) or a similar file and loaded by the library at runtime. If a type checking is implied by an explicit type-cast, it is performed on the virtual method table. Also note that C++ did not have a type checking mechanism for a while.

Object Slicing, Is it advantage?

Object slicing is some thing that object looses some of its attributes or functions when a child class is assigned to base class.
Some thing like
Class A{
}
Class B extends A{
}
Class SomeClass{
A a = new A();
B b = new B();
// Some where if might happen like this */
a = b; (Object slicing happens)
}
Do we say Object slicing is any beneficial in any ways?
If yes, can any one please tell me how object slicing be a helpful in development and where it might be helpful?
In C++, you should think of an object slice as a conversion from the derived type to the base type[*]. A brand new object is created, which is "inspired by a true story".
Sometimes this is something that you would want to do, but the result is not in any sense the same object as the original. When object slicing goes wrong is when people aren't paying attention, and think it is the same object or a copy of it.
It's normally not beneficial. In fact it's normally done accidentally when someone passes by value when they meant to pass by reference.
It's quite hard to come up with an example of when slicing is definitively the right thing to do, because it's quite hard (especially in C++) to come up with an example where a non-abstract base class is definitively the right thing to do. This is an important design point, and not one to pass over lightly - if you find yourself slicing an object, either deliberately or accidentally, quite likely your object hierarchy is wrong to start with. Either the base class shouldn't be used as a base class, or else it should have at least one pure virtual function and hence not be sliceable or passable by value.
So, any example I gave where an object is converted to an object of its base class, would rightly provoke the objection, "hang on a minute, what are you doing inheriting from a concrete class in the first place?". If slicing is accidental then it's probably a bug, and if it's deliberate then it's probably "code smell".
But the answer might be "yes, OK, this shouldn't really be how things are structured, but given that they are structured that way, I need to convert from the derived class to the base class, and that by definition is a slice". In that spirit, here's an example:
struct Soldier {
string name;
string rank;
string serialNumber;
};
struct ActiveSoldier : Soldier {
string currentUnit;
ActiveSoldier *commandingOfficer; // the design errors multiply!
int yearsService;
};
template <typename InputIterator>
void takePrisoners(InputIterator first, InputIterator last) {
while (first != last) {
Soldier s(*first);
// do some stuff with name, rank and serialNumber
++first;
}
}
Now, the requirement of the takePrisoners function template is that its parameter be an iterator for a type convertible to Soldier. It doesn't have to be a derived class, and we don't directly access the members "name", etc, so takePrisoners has tried to offer the easiest possible interface to implement given the restrictions (a) should work with Soldier, and (b) should be possible to write other types that it also works with.
ActiveSoldier is one such other type. For reasons best known only to the author of that class, it has opted to publicly inherit from Soldier rather than providing an overloaded conversion operator. We can argue whether that's ever a good idea, but let's suppose we're stuck with it. Because it's a derived class, it is convertible to Soldier. That conversion is called a slice. Hence, if we call takePrisoners passing in the begin() and end() iterators for a vector of ActiveSoldiers, then we will slice them.
You could probably come up with similar examples for an OutputIterator, where the recipient only cares about the base class part of the objects being delivered, and so allows them to be sliced as they're written to the iterator.
The reason it's "code smell" is that we should consider (a) rewriting ActiveSoldier, and (b) changing Soldier so that it can be accessed using functions instead of member access, so that we can abstract that set of functions as an interface that other types can implement independently, so that takePrisoners doesn't have to convert to Soldier. Either of those would remove the need for a slice, and would have potential benefits for the ease with which our code can be extended in future.
[*] because it is one. The last two lines below are doing the same thing:
struct A {
int value;
A(int v) : value(v) {}
};
struct B : A {
int quantity;
B(int v, int q) : A(v), quantity(q) {}
};
int main() {
int i = 12; // an integer
B b(12, 3); // an instance of B
A a1 = b; // (1) convert B to A, also known as "slicing"
A a2 = i; // (2) convert int to A, not known as "slicing"
}
The only difference is that (1) calls A's copy constructor (that the compiler provides even though the code doesn't), whereas (2) calls A's int constructor.
As someone else said, Java doesn't do object slicing. If the code you provide were turned into Java, then no kind of object slicing would happen. Java variables are references, not objects, so the postcondition of a = b is just that the variable "a" refers to the same object as the variable "b" - changes via one reference can be seen via the other reference, and so on. They just refer to it by a different type, which is part of polymorphism. A typical analogy for this is that I might think of a person as "my brother"[**], and someone else might think of the same person as "my vicar". Same object, different interface.
You can get the Java-like effect in C++ using pointers or references:
B b(24,7);
A *a3 = &b; // No slicing - a3 is a pointer to the object b
A &a4 = b; // No slicing - a4 is a reference to (pseudonym for) the object b
[**] In point of fact, my brother is not a vicar.