Related
I was doing a project that requires frequent database access, insertions and deletions. Should I go for Raw SQL commands or should I prefer to go with an ORM technique? The project can work fine without any objects and using only SQL commands? Does this affect scalability in general?
EDIT: The project is one of the types where the user isn't provided with my content, but the user generates content, and the project is online. So, the amount of content depends upon the number of users, and if the project has even 50000 users, and additionally every user can create content or read content, then what would be the most apt approach?
If you have no ( or limited ) experience with ORM, then it will take time to learn new API. Plus, you have to keep in mind, that the sacrifice the speed for 'magic'. For example, most ORMs will select wildcard '*' for fields, even when you just need list of titles from your Articles table.
And ORMs will aways fail in niche cases.
Most of ORMs out there ( the ones based on ActiveRecord pattern ) are extremely flawed from OOP's point of view. They create a tight coupling between your database structure and class/model.
You can think of ORMs as technical debt. It will make the start of project easier. But, as the code grows more complex, you will begin to encounter more and more problems caused by limitations in ORM's API. Eventually, you will have situations, when it is impossible to to do something with ORM and you will have to start writing SQL fragments and entires statements directly.
I would suggest to stay away from ORMs and implement a DataMapper pattern in your code. This will give you separation between your Domain Objects and the Database Access Layer.
I'd say it's better to try to achieve the objective in the most simple way possible.
If using an ORM has no real added advantage, and the application is fairly simple, I would not use an ORM.
If the application is really about processing large sets of data, and there is no business logic, I would not use an ORM.
That doesn't mean that you shouldn't design your application property though, but again: if using an ORM doesn't give you any benefit, then why should you use it ?
For speed of development, I would go with an ORM, in particular if most data access is CRUD.
This way you don't have to also develop the SQL and write data access routines.
Scalability should't suffer, though you do need to understand what you are doing (you could hurt scalability with raw SQL as well).
If the project is either oriented :
- data editing (as in viewing simple tables of data and editing them)
- performance (as in designing the fastest algorithm to do a simple task)
Then you could go with direct sql commands in your code.
The thing you don't want to do, is do this if this is a large software, where you end up with many classes, and lot's of code. If you are in this case, and you scatter sql everywhere in your code, you will clearly regret it someday. You will have a hard time making changes to your domain model. Any modification would become really hard (except for adding functionalities or entites independant with the existing ones).
More information would be good, though, as :
- What do you mean by frequent (how frequent) ?
- What performance do you need ?
EDIT
It seems you're making some sort of CMS service. My bet is you don't want to start stuffing your code with SQL. #teresko's pattern suggestion seems interesting, seperating your application logic from the DB (which is always good), but giving the possiblity to customize every queries. Nonetheless, adding a layer that fills in memory objects can take more time than simply using the database result to write your page, but I don't think that small difference should matter in your case.
I'd suggest to choose a good pattern that seperates your business logique and dataAccess, like what #terekso suggested.
It depends a bit on timescale and your current knowledge of MySQL and ORM systems. If you don't have much time, just do whatever you know best, rather than wasting time learning a whole new set of code.
With more time, an ORM system like Doctrine or Propel can massively improve your development speed. When the schema is still changing a lot, you don't want to be spending a lot of time just rewriting queries. With an ORM system, it can be as simple as changing the schema file and clearing the cache.
Then when the design settles down, keep an eye on performance. If you do use ORM and your code is solid OOP, it's not too big an issue to migrate to SQL one query at a time.
That's the great thing about coding with OOP - a decision like this doesn't have to bind you forever.
I would always recommend using some form of ORM for your data access layer, as there has been a lot of time invested into the security aspect. That alone is a reason to not roll your own, unless you feel confident about your skills in protecting against SQL injection and other vulnerabilities.
To be clear, by modifiable join view I mean a view constructed from the joining of two or more tables that allows insert/update/delete actions that modify any/all of the component tables.
This may be a postgres specific question, not sure. I am also interested if other DBMSs have idiosyncratic features for modifiable join views, since as far as I can tell, they are not possible in standard SQL.
I'm working on a postgres schema, and some of my recent reading has suggested that it is possible to construct modifiable join views using instead rules (CREATE RULE ... DO INSTEAD ...). Modifiable join views seem desirable since it would allow for hiding strong normalization behind an interface, providing a mechanism for classic abstraction. Rules are the only option for implementation, since currently triggers cannot be set on views.
However, the first modifiable view I tried to design ran into problems, and I find out that many consider non-trivial rules to be harmful (see links in comments to this SO answer). Also, I can't find any examples of modifiable join views on the web.
Questions (Edit to put finer points on the questions):
Do you have any experience with modifiable join views and can you provide a concrete example with select/insert/delete/update ability?
Are they practical, i.e. can they be treated transparently without having to tiptoe around mines/black holes?
Are they ever a good design choice, in terms of functionality/effort ratio and maintainability?
Would greatly appreciate links to any examples/discussions on this topic. Thanks.
Yes, I have some experience with updatable views in general. I think they're practical in PostgreSQL. Like all design choices, they can be a good choice, and they can be a bad choice.
I find them particularly useful in dealing with supertype/subtype tables. I create one view for each subtype; the view joins the subtype to the supertype. Revoke permissions on the base tables, write rules for the view, and give client code access only to the views. All data manipulation done by client code then goes through the view and the rules defined on them.
I don't think rules are really different from any other feature in any other environment. And by environment, I mean C, C++, Java, Ruby, Python, Erlang, and BASIC, not just dbms environments.
Use the good features of a language. Avoid the bad ones.
"Don't use malloc()" is bad advice. "Always check the return value of malloc()" is good advice. "Never use rules" is bad advice. "Avoid using rules in ways that are known to have questionable behavior" is good advice. The rules you need for views on supertype/subtype tables are simple and easy to understand. They don't misbehave.
At the theoretical level, views provide logical data independence. But that's only possible if the views are updatable. (And many views should be updatable directly by the database engine, without any need of rules or triggers.)
I use them as a replacement for ORMs. I think as long as you do not run-a-muck sprinkling them everywhere through the database they can be easy enough to understand. I define a schema for an application and then whatever views are in that schema are the methods and operations of that app. The client code can be mostly automated after that since the views give the abstraction I need to write generic client code.
People point out that the rule rewrite is not a real table (but it is posing as one) which makes it possible to write things that will break. This is possible but I have yet to come across it yet. The idea is to hide the complexity in the rewrite and then only do simple deletes and update with no joins. If it turns out that a join is needed - it is time to rewrite the rule, not the top level query.
At the end, I find it a very compact way to write the database. All the ways of interfacing with it are written as rules. No connection should have access to a real table. Your business logic is very explicit. If a view does not have an UPDATE rule for it - it can not be updated period. Since you have written all this in the database level instead of the client level, it is not tied to a web framework or a particular language. This leads to a lot of flexibility in how you want to connect to the database. Imagine you used web framework, but as time goes on you need direct access to the database for another source. Direct access will also bypass all of ORM business rules you worked so hard on. With a rule writing interface you can expose, the interface without fear that the new connection will corrupt the data.
If people say you can really F UP a database with them - then sure - of course you can. But you can with everything else too. If people say you can not use them at all with out mucking things up, then I would disagree.
Two quick links:
Why using rules is bad idea
Triggers on views
My personal preference is to use views only for reading data, (virtually) never for inserting or updating. By essentially re-normalizing data (which sounds like what you are doing) in your database, you are likely creating a system that will be very difficult to test and maintain in the long term.
If at all possible, look at mapping your denormalized data back to a normal schema somewhere in your application code, and providing it to the database that way (to individual tables IMHO) in a single transaction.
I know in SQL Server if you update a view you must limit the change to only one table anyway which makes using views for updating useless in my mind as you have to know which fields go with which tables anyway.
If you want to abstract the information out and not have to worry about the database structure for inserts adn updates, an ORM mught do a better job for you than views.
I have never used modifiable views of any sort but as you are asking whether they are a "reasonable design choice", can I suggest an alternative design choice with many benefits where modifiable views are not needed: a Transactional API
Basically what this amounts to is:
Users have no access to tables and cannot issue insert, update, delete statements at all
Users have access to functions that represent well defined transactions - at the simplest level these may just do a single DML, but often would not. The important thing is that they map to transactions in the 'business' sense rather than in the 'database' sense
For querying, users have access to (non-modifiable) views
I do usually do views in the form of "last-valid-record" just hidding and tracking modifications (like a wiki)
The only drawback that I see to this is: then you use your view as a table, and you join it with anything, and and you use it on "wheres", and you insert records on it, and so on, but behinds you have made lot of performance lost compared to the same acctions against a real table (more bigger and more complex). I think it depends on how many people must understud de schema. Its true that some DBMS also admit to index the views, but I think you lose an important amount of performance anyway. Sorry about my english.
I often hear people bashing ORMs for being inflexible and a "leaky abstraction", but you really don't hear why they're problematic. When used properly, what exactly are the faults of ORMs? I'm asking this because I'm working on a PHP orm and I'd like for it to solve problems that a lot of other ORMs fail at, such as lazy loading and the lack of subqueries.
Please be specific with your answers. Show some code or describe a database schema where an ORM struggles. Doesn't matter the language or the ORM.
One of the bigger issues I have noticed with all the ORMs I have used is updating only a few fields without retrieving the object first.
For example, say I have a Project object mapped in my database with the following fields: Id, name, description, owning_user. Say, through ajax, I want to just update the description field. In most ORMs the only way for me to update the database table while only having an Id and description values is to either retrieve the project object from the database, set the description and then send the object back to the database (thus requiring two database operations just for one simple update) or to update it via stored procedures (which is the method I am currently using).
Objects and database records really aren't all that similar. They have typed slots that you can store stuff in, but that's about it. Databases have a completely different notion of identity than programming languages. They can't handle composite objects well, so you have to use additional tables and foreign keys instead. Most have no concept of type inheritance. And the natural way to navigate a network of objects (follow some of the pointers in one object, get another object, and dereference again) is much less efficient when mapped to the database world, because you have to make multiple round trips and retrieve lots of data that you didn't care about.
In other words: the abstraction cannot be made very good in the first place; it isn't the ORM tools that are bad, but the metaphor that they implement. Instead of a perfect isomorphism it is is only a superficial similarity, so the task itself isn't a very good abstraction. (It is still way more useful than having to understand databases intimately, though. The scorn for ORM tools come mostly from DBAs looking down on mere programmers.)
ORMs also can write code that is not efficient. Since database performance is critical to most systems, they can cause problems that could have been avoided if a human being wrote the code (but which might not have been any better if the human in question didn't understand database performance tuning). This is especially true when the querying gets complex.
I think my biggest problem with them though is that by abstracting away the details, junior programmers are getting less understanding of how to write queries which they need to be able to to handle the edge cases and the places where the ORM writes really bad code. It's really hard to learn the advanced stuff when you never had to understand the basics. An ORM in the hands of someone who understands joins and group by and advanced querying is a good thing. In the hands of someone who doesn't understand boolean algebra and joins and a bunch of other basic SQL concepts, it is a very bad thing resulting in very poor design of database and queries.
Relational databases are not objects and shouldn't be treated as such. Trying to make an eagle into a silk purse is generally not successful. Far better to learn what the eagle is good at and why and let the eagle fly than to have a bad purse and a dead eagle.
The way I see it is like this. To use an ORM, you have to usually stack several php functions, and then connect to a database and essentially still run a MySQL query or something similar.
Why all of the abstraction in between code and database? Why can't we just use what we already know? Typically a web dev knows their backend language, their db language (some sort of SQL), and some sort of frontend languages, such as html, css, js, etc...
In essence, we're trying to add a layer of abstraction that includes many functions (and we all know php functions can be slower than assigning a variable). Yes, this is a micro calculation, but still, it adds up.
Not only do we now have several functions to go through, but we also have to learn the way the ORM works, so there's some time wasted there. I thought the whole idea of separation of code was to keep your code separate at all levels. If you're in the LAMP world, just create your query (you should know MySQL) and use the already existing php functionality for prepared statements. DONE!
LAMP WAY:
create query (string);
use mysqli prepared statements and retrieve data into array.
ORM WAY:
run a function that gets the entity
which runs a MySQL query
run another function that adds a conditional
run another function that adds another conditional
run another function that joins
run another function that adds conditionals on the join
run another function that prepares
runs another MySQL query
run another function that fetches the data
runs another MySQL Query
Does anyone else have a problem with the ORM stack? Why are we becoming such lazy developers? Or so creative that we're harming our code? If it ain't broke don't fix it. In turn, fix your dev team to understand the basics of web dev.
ORMs are trying to solve a very complex problem. There are edge cases galore and major design tradeoffs with no clear or obvious solutions. When you optimize an ORM design for situation A, you inherently make it awkward for solving situation B.
There are ORMs that handle lazy loading and subqueries in a "good enough" manner, but it's almost impossible to get from "good enough" to "great".
When designing your ORM, you have to have a pretty good handle on all the possible awkward database designs your ORM will be expected to handle. You have to explicitly make tradeoffs around which situations you are willing to handle awkwardly.
I don't look at ORMs as inflexible or any more leaky than your average complex abstraction. That said, certain ORMs are better than others in those respects.
Good luck reinventing the wheel.
Say if I have a large dataset, the table has well over a million records and the database is normalized so theres foreign keys and stuff. Ive set up the relations properly and i get a list of the first object applications = EntityLoad("entityName") but because of the relations and stuff the page takes like 24 seconds to load, even when i limit the number of records to show to like 5 it takes an awful long time to load.
My solution to this was create another object that just gets the list, and then when the user wants to , use the object with all the relations and show it to the user. Is this the right way to approach it, or am i missing a big ORM concept?
Are you counting just the time to get the data, or are you perhaps doing a CFDUMP on it or something else visually that could be slow. In other words, have you wrapped the EntityLoad by itself in a cftimer tag to be sure that it is the culprit?
The first thing I would do is enable SQL logging in your Application.cfc. Add logSQL=true to This.ormSettings.
That should allow you to grab the SQL that ORM generates. Run it in an analyzer. See if the ORM SQL is doing somethign crazy. See if it is an index that you missed or something.
Also are you doing paging as Ray talks about here: http://www.coldfusionjedi.com/index.cfm/2009/8/14/Simple-ColdFusion-9-ORM-Paging-Demo?
If not have you tried using ORMExecuteQuery and HQL to enable paging.
Those are my thoughts.
When defining complex domain models with Hibernate - you will sometimes need to tweak the mapping to improve performance. This is especially true if you are dealing with inheritance (not sure how much inheritance is in your model). The ultimate goal is to have your query pulling from as few tables as possible while still preserving your domain model. This might require using the advanced inheritance mappings (more on that in a sec).
LOGGING SQL
As Terry mentioned, you will want to be sure you can log the actual SQL that is being passed to your database (yeah, you don't totally get away from SQL with ORM). Here is a great article on setting up logging for Hibernate in CF9 from Rupesh:
http://www.rupeshk.org/blog/index.php/2009/07/coldfusion-orm-how-to-log-sql/
HIBERNATE MAPPING FILES
Anytime you want to do something beyond the basic, you want to be sure that you are looking at the actual Hibernate mapping files that are generated for your CFC's. Be sure to set the following with all of your hibernate options in Application.cfc:
savemapping = true
While the cfproperty properties allow you to define many aspects of the mapping, there are actually some things that can only be done in the Hibernate mapping files (and there are tons of community resources on this.
INHERITANCE MAPPING
As I mentioned earlier, Hibernate provides different inheritance strategies for mapping. They are Table per Hierarchy, Table per subclass, Table per concrete class, and implicit polymorphism. You can read more about these types in the CF9 docs under Advanced Mapping > Inheritance Mapping or in the Hibernate documentation (as it would take forever to explain each of these).
Knowing how your tables are mapped is very important with inheritance (and it is also where Hibernate can generate some HUGE queries if you don't tweak your setup).
Those are the things I can think of - if you can give some additional information about your domain model - we can look to see what other things might be done to tweak it.
There is a good chance Hibernate is doing it's caching thing. A fair comparison in my mind (everyone please feel free to add) is doing an:
EntityLoad("entity_name") is the same as doing a select * from TABLE
So, in this case, what Hibernate might be doing in instantiating the memory, and caching it a certain way, your database server might do this similarly when you sent such a broad SQL instruction.
I have been extremely interested in ORM the past few weeks and it looks to be a very rewarding undertaking.
For this reason, is there a tiem you would ever load all 500,000 records as a result? I assume not.
I have one large logging table that I will be attacking, I am finding that the SQL good stuff must be there. For example, mark the fields that are indexes as such, this will speed it up incredibly when searching. I am sure the ORM can handle this.
Beyond this:
Find some excellent Hibernate forums, resources, and tutorials so you can learn Hibernate. This isn't really as much a Coldfusion --> ORM issue as what Hibernate might do on it's own. I have ordered a few Hibernate books that I'm waiting on to see how they are.
Likewise there seems to be an incredible amount of Hibernate resources out there where you can bring the Performance enhancement solutions of Hibernate into the Coldfusion sphere. I might be making it too simple, but I see the CF-ORM implementation as a wrapper with some code generation to save us time.
Take a look at implementing filters to cut down your data in the EntityLoad() call.
As recommended in other threads, turn on sql logging and see what sql is being generated. Chances are it might not be what you need. Check out HQL to see if you can form a better statement.
Most importantly, share what you find. I'll volunteer to do the same on this as you've tempted me to go try this out in my spare time a bit sooner than planned.
Faisal, we ran into this with Linq (c# orm).
Our solution was to create simple objects not holding the relational data. For instance, along with Users we had a SimpleUsers object which held little or no relation to any other object and had a limited set of columns.
There could be other ways of handling this but this approach helped tremendously with the query speed.
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 8 years ago.
The community reviewed whether to reopen this question last year and left it closed:
Original close reason(s) were not resolved
Improve this question
For some of the apps I've developed (then proceeded to forget about), I've been writing plain SQL, primarily for MySQL. Though I have used ORMs in python like SQLAlchemy, I didn't stick with them for long. Usually it was either the documentation or complexity (from my point of view) holding me back.
I see it like this: use an ORM for portability, plain SQL if it's just going to be using one type of database. I'm really looking for advice on when to use an ORM or SQL when developing an app that needs database support.
Thinking about it, it would be far better to just use a lightweight wrapper to handle database inconsistencies vs. using an ORM.
Speaking as someone who spent quite a bit of time working with JPA (Java Persistence API, basically the standardized ORM API for Java/J2EE/EJB), which includes Hibernate, EclipseLink, Toplink, OpenJPA and others, I'll share some of my observations.
ORMs are not fast. They can be adequate and most of the time adequate is OK but in a high-volume low-latency environment they're a no-no;
In general purpose programming languages like Java and C# you need an awful lot of magic to make them work (eg load-time weaving in Java, instrumentation, etc);
When using an ORM, rather than getting further from SQL (which seems to be the intent), you'll be amazed how much time you spend tweaking XML and/or annotations/attributes to get your ORM to generate performant SQL;
For complex queries, there really is no substitute. Like in JPA there are some queries that simply aren't possible that are in raw SQL and when you have to use raw SQL in JPA it's not pretty (C#/.Net at least has dynamic types--var--which is a lot nicer than an Object array);
There are an awful lot of "gotchas" when using ORMs. This includes unintended or unexpected behavior, the fact that you have to build in the capability to do SQL updates to your database (by using refresh() in JPA or similar methods because JPA by default caches everything so it won't catch a direct database update--running direct SQL updates is a common production support activity);
The object-relational mismatch is always going to cause problems. With any such problem there is a tradeoff between complexity and completeness of the abstraction. At times I felt JPA went too far and hit a real law of diminishing returns where the complexity hit wasn't justified by the abstraction.
There's another problem which takes a bit more explanation.
The traditional model for a Web application is to have a persistence layer and a presentation layer (possibly with a services or other layers in between but these are the important two for this discussion). ORMs force a rigid view from your persistence layer up to the presentation layer (ie your entities).
One of the criticisms of more raw SQL methods is that you end up with all these VOs (value objects) or DTOs (data transfer objects) that are used by simply one query. This is touted as an advantage of ORMs because you get rid of that.
Thing is those problems don't go away with ORMs, they simply move up to the presentation layer. Instead of creating VOs/DTOs for queries, you create custom presentation objects, typically one for every view. How is this better? IMHO it isn't.
I've written about this in ORM or SQL: Are we there yet?.
My persistence technology of choice (in Java) these days is ibatis. It's a pretty thin wrapper around SQL that does 90%+ of what JPA can do (it can even do lazy-loading of relationships although its not well-documented) but with far less overhead (in terms of complexity and actual code).
This came up last year in a GWT application I was writing. Lots of translation from EclipseLink to presentation objects in the service implementation. If we were using ibatis it would've been far simpler to create the appropriate objects with ibatis and then pass them all the way up and down the stack. Some purists might argue this is Badâ„¢. Maybe so (in theory) but I tell you what: it would've led to simpler code, a simpler stack and more productivity.
ORMs have some nice features. They can handle much of the dog-work of copying database columns to object fields. They usually handle converting the language's date and time types to the appropriate database type. They generally handle one-to-many relationships pretty elegantly as well by instantiating nested objects. I've found if you design your database with the strengths and weaknesses of the ORM in mind, it saves a lot of work in getting data in and out of the database. (You'll want to know how it handles polymorphism and many-to-many relationships if you need to map those. It's these two domains that provide most of the 'impedance mismatch' that makes some call ORM the 'vietnam of computer science'.)
For applications that are transactional, i.e. you make a request, get some objects, traverse them to get some data and render it on a Web page, the performance tax is small, and in many cases ORM can be faster because it will cache objects it's seen before, that otherwise would have queried the database multiple times.
For applications that are reporting-heavy, or deal with a large number of database rows per request, the ORM tax is much heavier, and the caching that they do turns into a big, useless memory-hogging burden. In that case, simple SQL mapping (LinQ or iBatis) or hand-coded SQL queries in a thin DAL is the way to go.
I've found for any large-scale application you'll find yourself using both approaches. (ORM for straightforward CRUD and SQL/thin DAL for reporting).
I say plain SQL for Reads, ORM for CUD.
Performance is something I'm always concerned about, specially in web applications, but also code maintainability and readability. To address these issues I wrote SqlBuilder.
ORM is not just portability (which is kinda hard to achieve even with ORMs, for that matter). What it gives you is basically a layer of abstraction over a persistent store, when a ORM tool frees you from writing boilerplate SQL queries (selects by PK or by predicates, inserts, updates and deletes) and lets you concentrate on the problem domain.
Any respectable design will need some abstraction for the database, just to handle the impedance mismatch. But the simplest first step (and adequate for most cases) I would expect would be a DAL, not a heavyweight ORM. Your only options aren't those at the ends of the spectrum.
EDIT in response to a comment requesting me to describe how I distinguish DAL from ORM:
A DAL is what you write yourself, maybe starting from a class that simply encapsulates a table and maps its fields to properties. An ORM is code you don't write for abstraction mechanisms inferred from other properties of your dbms schema, mostly PKs and FKs. (This is where you find out if the automatic abstractions start getting leaky or not. I prefer to inform them intentionally, but that may just be my personal preference).
The key that made my ORM use really fly was code generation. I agree that the ORM route isn't the fastest, in code performance terms. But when you have a medium to large team, the DB is changing rapidly the ability to regenerate classes and mappings from the DB as part of the build process is something brilliant to behold, especially when you use CI. So your code may not be the fastest, but your coding will be - I know which I'd take in most projects.
My recommendation is to develop using an ORM while the Schema is still fluid, use profiling to find bottlenecks, then tune those areas which need it using raw Sql.
Another thought, the caching built into Hibernate can often make massive performance improvements if used in the right way. No more going back to the DB to read reference data.
Dilemma whether to use a framework or not is quite common in modern day software development scenario.
What is important to understand is that every framework or approach has its pros and cons - for example in our experience we have found that ORM is useful when dealing with transactions i.e. insert/update/delete operations - but when it comes to fetch data with complex results it becomes important to evaluate the performance and effectiveness of the ORM tool.
Also it is important to understand that it is not compulsory to select a framework or an approach and implement everything in that. What we mean by that is we can have mix of ORM and native query language. Many ORM frameworks give extension points to plugin in native SQL. We should try not to over use a framework or an approach. We can combine certain frameworks or approaches and come with an appropriate solution.
You can use ORM when it comes to insertion, updation, deletion, versioning with high level of concurrency and you can use Native SQL for report generation and long listing
There's no 'one-tool-fits-all' solution, and this is also true for the question 'should i use an or/m or not ? '.
I would say: if you have to write an application/tool which is very 'data' focused, without much other logic, then I 'd use plain SQL, since SQL is the domain-specific language for this kind of applications.
On the other hand, if I was to write a business/enterprise application which contains a lot of 'domain' logic, then I'd write a rich class model which could express this domain in code. In such case, an OR/M mapper might be very helpfull to successfully do so, as it takes a lot of plumbing code out of your hands.
One of the apps I've developed was an IRC bot written in python. The modules it uses run in separate threads, but I haven't figured out a way to handle threading when using sqlite. Though, that might be better for a separate question.
I really should have just reworded both the title and the actual question. I've never actually used a DAL before, in any language.
Use an ORM that works like SQL, but provides compile-time checks and type safety. Like my favorite: Data Knowledge Objects (disclosure: I wrote it)
For example:
for (Bug bug : Bug.ALL.limit(100)) {
int id = bug.getId();
String title = bug.getTitle();
System.out.println(id +" "+ title);
}
Fully streaming. Easy to set up (no mappings to define - reads your existing schemas). Supports joins, transactions, inner queries, aggregation, etc. Pretty much anything you can do in SQL. And has been proven from giant datasets (financial time series) all the way down to trivial (Android).
I know this question is very old, but I thought that I would post an answer in case anyone comes across it like me. ORMs have come a long way. Some of them actually give you the best of both worlds: making development more productive and maintaining performance.
Take a look at SQL Data (http://sqldata.codeplex.com). It is a very light weight ORM for c# that covers all the bases.
FYI, I am the author of SQL Data.
I'd like to add my voice to the chorus of replies that say "There's a middle ground!".
To an application programmer, SQL is a mixture of things you might want to control and things you almost certainly don't want to be bothered controlling.
What I've always wanted is a layer (call it DAL, ORM, or micro-ORM, I don't mind which) that will take charge of the completely predictable decisions (how to spell SQL keywords, where the parentheses go, when to invent column aliases, what columns to create for a class that holds two floats and an int ...), while leaving me in charge of the higher-level aspects of the SQL, i.e. how to arrange JOINs, server-side computations, DISTINCTs, GROUP BYs, scalar subqueries, etc.
So I wrote something that does this: http://quince-lib.com/
It's for C++: I don't know whether that's the language you're using, but all the same it might be interesting to see this take on what a "middle ground" could look like.