Another ConcurrentModificationException question - iterator

I've searched StackOverflow and there are many ConcurrentModificationException questions. After reading them, I'm still confused. I'm getting a lot of these exceptions. I'm using a "Registry" setup to keep track of Objects:
public class Registry {
public static ArrayList<Messages> messages = new ArrayList<Messages>();
public static ArrayList<Effect> effects = new ArrayList<Effect>();
public static ArrayList<Projectile> proj = new ArrayList<Projectile>();
/** Clears all arrays */
public static void recycle(){
messages.clear();
effects.clear();
proj.clear();
}
}
I'm adding and removing objects to these lists by accessing the ArrayLists like this: Registry.effects.add(obj) and Registry.effects.remove(obj)
I managed to get around some errors by using a retry loop:
//somewhere in my game..
boolean retry = true;
while (retry){
try {
removeEffectsWithSource("CHARGE");
retry = false;
}
catch (ConcurrentModificationException c){}
}
private void removeEffectsWithSource(String src) throws ConcurrentModificationException {
ListIterator<Effect> it = Registry.effects.listIterator();
while ( it.hasNext() ){
Effect f = it.next();
if ( f.Source.equals(src) ) {
f.unapplyEffects();
Registry.effects.remove(f);
}
}
}
But in other cases this is not practical. I keep getting ConcurrentModificationExceptions in my drawProjectiles() method, even though it doesn't modify anything. I suppose the culprit is if I touched the screen, which creates a new Projectile object and adds it to Registry.proj while the draw method is still iterating.
I can't very well do a retry loop with the draw method, or it will re-draw some of the objects. So now I'm forced to find a new solution.. Is there a more stable way of accomplishing what I'm doing?
Oh and part 2 of my question: Many people suggest using ListIterators (as I have been using), but I don't understand.. if I call ListIterator.remove() does it remove that object from the ArrayList it's iterating through, or just remove it from the Iterator itself?

Top line, three recommendations:
Don't do the "wrap an exception in a loop" thing. Exceptions are for exceptional conditions, not control flow. (Effective Java #57 or Exceptions and Control Flow or Example of "using exceptions for control flow")
If you're going to use a Registry object, expose thread-safe behavioral, not accessor methods on that object and contain the concurrency reasoning within that single class. Your life will get better. No exposing collections in public fields. (ew, and why are those fields static?)
To solve the actual concurrency issues, do one of the following:
Use synchronized collections (potential performance hit)
Use concurrent collections (sometimes complicated logic, but probably efficient)
Use snapshots (probably with synchronized or a ReadWriteLock under the covers)
Part 1 of your question
You should use a concurrent data structure for the multi-threaded scenario, or use a synchronizer and make a defensive copy. Probably directly exposing the collections as public fields is wrong: your registry should expose thread-safe behavioral accessors to those collections. For instance, maybe you want a Registry.safeRemoveEffectBySource(String src) method. Keep the threading specifics internal to the registry, which seems to be the "owner" of this aggregate information in your design.
Since you probably don't really need List semantics, I suggest replacing these with ConcurrentHashMaps wrapped into Set using Collections.newSetFromMap().
Your draw() method could either a) use a Registry.getEffectsSnapshot() method that returns a snapshot of the set; or b) use an Iterable<Effect> Registry.getEffects() method that returns a safe iterable version (maybe just backed by the ConcurrentHashMap, which won't throw CME under any circumstances). I think (b) is preferable here, as long as the draw loop doesn't need to modify the collection. This provides a very weak synchronization guarantee between the mutator thread(s) and the draw() thread, but assuming the draw() thread runs often enough, missing an update or something probably isn't a big deal.
Part 2 of your question
As another answer notes, in the single-thread case, you should just make sure you use the Iterator.remove() to remove the item, but again, you should wrap this logic inside the Registry class if at all possible. In some cases, you'll need to lock a collection, iterate over it collecting some aggregate information, and make structural modifications after the iteration completes. You ask if the remove() method just removes it from the Iterator or from the backing collection... see the API contract for Iterator.remove() which tells you it removes the object from the underlying collection. Also see this SO question.

You cannot directly remove an item from a collection while you are still iterating over it, otherwise you will get a ConcurrentModificationException.
The solution is, as you hint, to call the remove method on the Iterator instead. This will remove it from the underlying collection as well, but it will do it in such a way that the Iterator knows what's going on and so doesn't throw an exception when it finds the collection has been modified.

Related

Kotlin - java.util.ConcurrentModificationException: null

Guys how can I fix the error java.util.ConcurrentModificationException: null
experiments.forEach {
if(NAME_VARIANT == it.variantName) {
for (i in (0..Math.min(result.size - 1, Constants.MAX_METHODS_APPLIED))) {
if (response.paymentMethods[i].scoring.rules!!.none { it.ruleName == NAME_RULE}) {
response.appliedExperiments.clear()
}
}
}
}
This exception ConcurrentModificationException is thrown when you're trying to modify a collection at the same time as iterating over it.
In the piece of code you provided, you're iterating over experiments, and you're modifying response.appliedExperiments (by calling clear() on it). If those 2 variables actually point to the same collection, calling clear() is expected to throw.
In order to do what you want, you probably want those lists to start off as copies of each other, but still be different. When you create response.appliedExperiments, make sure it's a new list and not the same list.
EDIT: in the code you provided, you are passing experiments directly to the constructor of SortingServiceResponse, and I'm guessing this constructor uses the list as-is as the appliedExperiments property of reponse. Instead, you should pass a copy of the list, for instance using toMutableList():
val response = SortingServiceResponse(experiments.toMutableList(), result)
An even better approach would be to use read-only List instead of MutableList for experiments to avoid making this kind of mistakes in the first place. Only use mutable collections when you really need to. Most of the time, you can use operators (like filter or map) that create new read-only lists instead of working with mutable lists directly.

Design pattern to ensure that a method A is called before method B

I have a sample(incomplete) class like
class ABC{
public:
void login();
void query_users();
//other methods
private:
//member data
}
This class should be used in a way that login needs to be called first and then only other methods like query_users, etc., can be called. Login sets some private member data for the other methods to use. Is there any simpler way to achieve this other than calling a function that checks if the member data is set at the start of every other method in the class?
There are two general approach I know of, and they differ a good bit. You'll have to pick the appropriate mechanism for the task - in standard class-based OO languages (e.g. Java/C++/C#/Python), they are the only two approaches I know of. (There may be other approaches in different paradigms that I am unfamiliar with.)
1. Check the state.
This is done in many classes already that have to track the state of the system/backing resource. Two common examples are (file) stream and database connections.
A "template" might look like:
void Logon(credentials) { ..; loggedOn = true }
void DieUnlessLoggedIn { if (!loggedOn) { throw .. } }
void DoStuff () { DieUnlessLoggedIn(); .. }
While the above approach is pretty generic, some languages may support invariants (Eiffel), decorations (Python), annotations, AOP, or other assertion mechanisms.
This approach is useful for dynamic state in a mutable world: e.g. what happens after "Logout"? The state for DoStuff is invalid again until a re-logon (if it's allowed). However, this approach cannot be used for compile-time checks in general in mainstream OOP languages because the run-time state simply is not available at compile-time.
2. Use multiple types to represent state.
Create two separate types, such that type ServiceLogon (method Logon) creates ServiceAccess (method DoStuff). Thus DoStuff can only be called (on type ServiceAccess) after created from Logon (on ServiceLogon). This works well to enforce calling order semantics in static languages with member hiding - because programs won't compile if it's wrong.
login = new ServiceLogon(credentials)
access = login.Logon();
access.DoStuff(); // can't be called before obtained via Logon
Using the type to encode additional state can be overly complex as it can fracture a class-based type system, but is useful in "builder" and "repository" patterns and such; basically, ask if the type warrants being split to maintain SRP, then considering this approach.
This approach cannot handle things like "logout" entirely without incorporating state checking as type ServiceAccess would (in the clean sense) always represent the same state due to it being encoded in the type.
1. & 2. Use state checking and state/role-specific types.
A hybrid is totally acceptable, of course, and the above two approaches are not mutually exclusive. It may make sense to separate the roles making one type (and thus methods invoked upon it) dependent upon another method while still checking runtime state as appropriate. As per above, #1 is really good for runtime guards (which can be highly dynamic) while #2 can enforce certain rules at compile-time.
What you can do is to create instances of ABC form a static factory method that returns the instance you can use. In pseudo-code:
abc = ABC.login(); //sets all the state
users = abc.query_users();
I am not sure this is the best way but you can make login() private and call it as part of the constructor, which would ensure that login() is called at time of object creation itself and after that only any other functions can be called (unless you have static functions)
class ABC{
public ABC(credentials){
login(credentails);
}
public:
void query_users();
//other methods
private:
void login();
//member data
}
It will already work first when it goes from the top down. If you want to make sure that login is successful then call the other methods from inside the login() method.
like:
public void login(){
//do login code
if(//code for login check){
//run other methods
}
else{
login(); //re-run login workings
}
}
If you really want to follow good patterns you might try making as many of your classes immutable as possible.
This would imply that your constructor sets the total state (does the entire login) and then the order of the method calls is totally irrelevant.

Is there any disadvantage of writing a long constructor?

Does it affect the time in loading the application?
or any other issues in doing so?
The question is vague on what "long" means. Here are some possible interpretations:
Interpretation #1: The constructor has many parameters
Constructors with many parameters can lead to poor readability, and better alternatives exist.
Here's a quote from Effective Java 2nd Edition, Item 2: Consider a builder pattern when faced with many constructor parameters:
Traditionally, programmers have used the telescoping constructor pattern, in which you provide a constructor with only the required parameters, another with a single optional parameters, a third with two optional parameters, and so on...
The telescoping constructor pattern is essentially something like this:
public class Telescope {
final String name;
final int levels;
final boolean isAdjustable;
public Telescope(String name) {
this(name, 5);
}
public Telescope(String name, int levels) {
this(name, levels, false);
}
public Telescope(String name, int levels, boolean isAdjustable) {
this.name = name;
this.levels = levels;
this.isAdjustable = isAdjustable;
}
}
And now you can do any of the following:
new Telescope("X/1999");
new Telescope("X/1999", 13);
new Telescope("X/1999", 13, true);
You can't, however, currently set only the name and isAdjustable, and leaving levels at default. You can provide more constructor overloads, but obviously the number would explode as the number of parameters grow, and you may even have multiple boolean and int arguments, which would really make a mess out of things.
As you can see, this isn't a pleasant pattern to write, and even less pleasant to use (What does "true" mean here? What's 13?).
Bloch recommends using a builder pattern, which would allow you to write something like this instead:
Telescope telly = new Telescope.Builder("X/1999").setAdjustable(true).build();
Note that now the parameters are named, and you can set them in any order you want, and you can skip the ones that you want to keep at default values. This is certainly much better than telescoping constructors, especially when there's a huge number of parameters that belong to many of the same types.
See also
Wikipedia/Builder pattern
Effective Java 2nd Edition, Item 2: Consider a builder pattern when faced with many constructor parameters (excerpt online)
Related questions
When would you use the Builder Pattern?
Is this a well known design pattern? What is its name?
Interpretation #2: The constructor does a lot of work that costs time
If the work must be done at construction time, then doing it in the constructor or in a helper method doesn't really make too much of a difference. When a constructor delegates work to a helper method, however, make sure that it's not overridable, because that could lead to a lot of problems.
Here's some quote from Effective Java 2nd Edition, Item 17: Design and document for inheritance, or else prohibit it:
There are a few more restrictions that a class must obey to allow inheritance. Constructors must not invoke overridable methods, directly or indirectly. If you violate this rule, program failure will result. The superclass constructor runs before the subclass constructor, so the overriding method in the subclass will be invoked before the subclass constructor has run. If the overriding method depends on any initialization performed by the subclass constructor, the method will not behave as expected.
Here's an example to illustrate:
public class ConstructorCallsOverride {
public static void main(String[] args) {
abstract class Base {
Base() { overrideMe(); }
abstract void overrideMe();
}
class Child extends Base {
final int x;
Child(int x) { this.x = x; }
#Override void overrideMe() {
System.out.println(x);
}
}
new Child(42); // prints "0"
}
}
Here, when Base constructor calls overrideMe, Child has not finished initializing the final int x, and the method gets the wrong value. This will almost certainly lead to bugs and errors.
Interpretation #3: The constructor does a lot of work that can be deferred
The construction of an object can be made faster when some work is deferred to when it's actually needed; this is called lazy initialization. As an example, when a String is constructed, it does not actually compute its hash code. It only does it when the hash code is first required, and then it will cache it (since strings are immutable, this value will not change).
However, consider Effective Java 2nd Edition, Item 71: Use lazy initialization judiciously. Lazy initialization can lead to subtle bugs, and don't always yield improved performance that justifies the added complexity. Do not prematurely optimize.
Constructors are a little special in that an unhandled exception in a constructor may have weird side effects. Without seeing your code I would assume that a long constructor increases the risk of exceptions. I would make the constructor as simple as needed and utilize other methods to do the rest in order to provide better error handling.
The biggest disadvantage is probably the same as writing any other long function -- that it can get complex and difficult to understand.
The rest is going to vary. First of all, length and execution time don't necessarily correlate -- you could have a single line (e.g., function call) that took several seconds to complete (e.g., connect to a server) or lots of code that executed entirely within the CPU and finished quickly.
Startup time would (obviously) only be affected by constructors that were/are invoked during startup. I haven't had an issue with this in any code I've written (at all recently anyway), but I've seen code that did. On some types of embedded systems (for one example) you really want to avoid creating and destroying objects during normal use, so you create almost everything statically during bootup. Once it's running, you can devote all the processor time to getting the real work done.
Constructor is yet another function. You need very long functions called many times to make the program work slow. So if it's only called once it usually won't matter how much code is inside.
It affects the time it takes to construct that object, naturally, but no more than having an empty constructor and calling methods to do that work instead. It has no effect on the application load time
In case of copy constructor if we use donot use reference in that case
it will create an object and call the copy constructor and passing the
value to the copy constructor and each time a new object is created and
each time it will call the copy constructor it goes to infinite and
fill the memory then it display the error message .
if we pass the reference it will not create the new object for storing
the value. and no recursion will take place
I would avoid doing anything in your constructor that isn't absolutely necessary. Initialize your variables in there, and try not to do much else. Additional functionality should reside in separate functions that you call only if you need to.

Is this a valid use of the lock keyword in C#?

I have a singleton class AppSetting in an ASP.NET app where I need to check a value and optionally update it. I know I need to use a locking mechanism to prevent multi-threading issues, but can someone verify that the following is a valid approach?
private static void ValidateEncryptionKey()
{
if (AppSetting.Instance.EncryptionKey.Equals(Constants.ENCRYPTION_KEY, StringComparison.Ordinal))
{
lock (AppSetting.Instance)
{
if (AppSetting.Instance.EncryptionKey.Equals(Constants.ENCRYPTION_KEY, StringComparison.Ordinal))
{
AppSetting.Instance.EncryptionKey = GenerateNewEncryptionKey();
AppSetting.Instance.Save();
}
}
}
}
I have also seen examples where you lock on a private field in the current class, but I think the above approach is more intuitive.
Thanks!
Intuitive, maybe, but the reason those examples lock on a private field is to ensure that no other piece of code in the application can take the same lock in such a way as to deadlock the application, which is always good defensive practice.
If it's a small application and you're the only programmer working on it, you can probably get away with locking on a public field/property (which I presume AppSetting.Instance is?), but in any other circumstances, I'd strongly recommend that you go the private field route. It will save you a whole lot of debugging time in the future when someone else, or you in the future having forgotten the implementation details of this bit, take a lock on AppSetting.Instance somewhere distant in the code and everything starts crashing.
I'd also suggest you lose the outermost if. Taking a lock isn't free, sure, but it's a lot faster than doing a string comparison, especially since you need to do it a second time inside the lock anyway.
So, something like:
private object _instanceLock = new object () ;
private static void ValidateEncryptionKey()
{
lock (AppSetting.Instance._instanceLock)
{
if (AppSetting.Instance.EncryptionKey.Equals(Constants.ENCRYPTION_KEY, StringComparison.Ordinal))
{
AppSetting.Instance.EncryptionKey = GenerateNewEncryptionKey();
AppSetting.Instance.Save();
}
}
}
An additional refinement, depending on what your requirements are to keep the EncryptionKey consistent with the rest of the state in AppSetting.Instance, would be to use a separate private lock object for the EncryptionKey and any related fields, rather than locking the entire instance every time.

God object - decrease coupling to a 'master' object

I have an object called Parameters that gets tossed from method to method down and up the call tree, across package boundaries. It has about fifty state variables. Each method might use one or two variables to control its output.
I think this is a bad idea, beacuse I can't easily see what a method needs to function, or even what might happen if with a certain combination of parameters for module Y which is totally unrelated to my current module.
What are some good techniques for decreasing coupling to this god object, or ideally eliminating it ?
public void ExporterExcelParFonds(ParametresExecution parametres)
{
ApplicationExcel appExcel = null;
LogTool.Instance.ExceptionSoulevee = false;
bool inclureReferences = parametres.inclureReferences;
bool inclureBornes = parametres.inclureBornes;
DateTime dateDebut = parametres.date;
DateTime dateFin = parametres.dateFin;
try
{
LogTool.Instance.AfficherMessage(Variables.msg_GenerationRapportPortefeuilleReference);
bool fichiersPreparesAvecSucces = PreparerFichiers(parametres, Sections.exportExcelParFonds);
if (!fichiersPreparesAvecSucces)
{
parametres.afficherRapportApresGeneration = false;
LogTool.Instance.ExceptionSoulevee = true;
}
else
{
The caller would do :
PortefeuillesReference pr = new PortefeuillesReference();
pr.ExporterExcelParFonds(parametres);
First, at the risk of stating the obvious: pass the parameters which are used by the methods, rather than the god object.
This, however, might lead to some methods needing huge amounts of parameters because they call other methods, which call other methods in turn, etcetera. That was probably the inspiration for putting everything in a god object. I'll give a simplified example of such a method with too many parameters; you'll have to imagine that "too many" == 3 here :-)
public void PrintFilteredReport(
Data data, FilterCriteria criteria, ReportFormat format)
{
var filteredData = Filter(data, criteria);
PrintReport(filteredData, format);
}
So the question is, how can we reduce the amount of parameters without resorting to a god object? The answer is to get rid of procedural programming and make good use of object oriented design. Objects can use each other without needing to know the parameters that were used to initialize their collaborators:
// dataFilter service object only needs to know the criteria
var dataFilter = new DataFilter(criteria);
// report printer service object only needs to know the format
var reportPrinter = new ReportPrinter(format);
// filteredReportPrinter service object is initialized with a
// dataFilter and a reportPrinter service, but it doesn't need
// to know which parameters those are using to do their job
var filteredReportPrinter = new FilteredReportPrinter(dataFilter, reportPrinter);
Now the FilteredReportPrinter.Print method can be implemented with only one parameter:
public void Print(data)
{
var filteredData = this.dataFilter.Filter(data);
this.reportPrinter.Print(filteredData);
}
Incidentally, this sort of separation of concerns and dependency injection is good for more than just eliminating parameters. If you access collaborator objects through interfaces, then that makes your class
very flexible: you can set up FilteredReportPrinter with any filter/printer implementation you can imagine
very testable: you can pass in mock collaborators with canned responses and verify that they were used correctly in a unit test
If all your methods are using the same Parameters class then maybe it should be a member variable of a class with the relevant methods in it, then you can pass Parameters into the constructor of this class, assign it to a member variable and all your methods can use it with having to pass it as a parameter.
A good way to start refactoring this god class is by splitting it up into smaller pieces. Find groups of properties that are related and break them out into their own class.
You can then revisit the methods that depend on Parameters and see if you can replace it with one of the smaller classes you created.
Hard to give a good solution without some code samples and real world situations.
It sounds like you are not applying object-oriented (OO) principles in your design. Since you mention the word "object" I presume you are working within some sort of OO paradigm. I recommend you convert your "call tree" into objects that model the problem you are solving. A "god object" is definitely something to avoid. I think you may be missing something fundamental... If you post some code examples I may be able to answer in more detail.
Query each client for their required parameters and inject them?
Example: each "object" that requires "parameters" is a "Client". Each "Client" exposes an interface through which a "Configuration Agent" queries the Client for its required parameters. The Configuration Agent then "injects" the parameters (and only those required by a Client).
For the parameters that dictate behavior, one can instantiate an object that exhibits the configured behavior. Then client classes simply use the instantiated object - neither the client nor the service have to know what the value of the parameter is. For instance for a parameter that tells where to read data from, have the FlatFileReader, XMLFileReader and DatabaseReader all inherit the same base class (or implement the same interface). Instantiate one of them base on the value of the parameter, then clients of the reader class just ask for data to the instantiated reader object without knowing if the data come from a file or from the DB.
To start you can break your big ParametresExecution class into several classes, one per package, which only hold the parameters for the package.
Another direction could be to pass the ParametresExecution object at construction time. You won't have to pass it around at every function call.
(I am assuming this is within a Java or .NET environment) Convert the class into a singleton. Add a static method called "getInstance()" or something similar to call to get the name-value bundle (and stop "tramping" it around -- see Ch. 10 of "Code Complete" book).
Now the hard part. Presumably, this is within a web app or some other non batch/single-thread environment. So, to get access to the right instance when the object is not really a true singleton, you have to hide selection logic inside of the static accessor.
In java, you can set up a "thread local" reference, and initialize it when each request or sub-task starts. Then, code the accessor in terms of that thread-local. I don't know if something analogous exists in .NET, but you can always fake it with a Dictionary (Hash, Map) which uses the current thread instance as the key.
It's a start... (there's always decomposition of the blob itself, but I built a framework that has a very similar semi-global value-store within it)