Composition of Objects - oop

I have a class that acts as a manager and does some work.
A servlet that starts up when the application server starts up instantiates this manager.
I need to add another class that will do other work, and needs to coordinate with the manager.
I was thinking about adding the class to the manager as an instance variable.
Should I have the manager instantiate the new class (like in the constructor), or have the servlet instantiate the new class and call manager.setNewClass() after the manager has been instantiated?

Well, as a gross-over-generalization, you should instantiate it in the servlet and pass it into the manager (either via a constructor parameter, or via setNewClass())... Inject the dependencies rather than hard-code them.
However, depending on your exact use-case, even that might not be the right answer. You might be better off with a Builder for constructing the manager class. That way, the builder manages the construction of the entire manager (including any dependencies) rather than hard-coding it into the servlet. This would move the dependency out of the servlet and into the builder (which you can better deal with in tests and other code).
The short answer is that there's no silver bullet. Without knowing the hard relationships between all of the classes, and the roles and responsibilities, it's hard to say the best method. But instantiating in a constructor is almost never a good idea and you should inject the dependency in some form or another (but from where is up for debate)...

This reminds me of the FFF pattern.
It does not matter where you create the instance. Just create wherever it fits you best, and if you need it somewhere else, just apply some basic refactoring.
If you really need decoupling try using some tool like Guice, but only if you really need it.

You should do the latter -- it decouples the manager from its delegate. To do the decoupling correctly, you should create an interface that defines the behavior the manager expects, and then provide an implementation via inversion of control/dependency injection. This will allow you to test the manager and its worker class (I called it a delegate, but it might not be) in isolation.
EDIT -- this answer assumes java because you mentioned servlet.
You have your manager class, in it you expect an interface
class Manager {
Worker worker;
Manager(Worker worker) {
this.worker = workder
}
}
Worker is an interface. It defines behavour but not implementation
interface Worker {
public void doesSomething(); //method definition but no implementation
}
you now need to create an implementation
class WorkerImpl implements Worker {
// must define a doesSomething() implementation
}
The manager just knows it gets some Worker. You can provide any class that implements the interface. This is decoupling -- the Manager is not bound to any particular implementation, it is bound only to the behavour of a worker.

Related

How implement the same instance of a clas throughout the app?

I am trying to implement a NotificationService in a correct way from the point of view of OOP. For this I have the next interface:
abstract class NotificationsService {
void initNotificationsHandlers();
int sendGeneralNotification({String? title, String? body});
//...
}
And his subclass:
class FirebaseNotificationService extends NotificationsService {
//All implementations...
}
The problem is when I implement it. I have to instance it on the main:
NotificationsService notificationsService = new FirebaseNotificationService();
But I have to use this service in more classes,and I don't want to instance the FirebaseNotificationService in every class because I would be violating the Dependency Inversion Principle. I want other classes just know the abstraction NotificationsService.
I have thought using something like this:
abstract class NotificationsService {
///Current notification service subclass used.
static final NotificationsService instance;
//...
}
And then implementing the class this way:
Main
NotificationsService.instance = new FirebaseNotificationService();
Other class
NotificationsService.instance.initNotificationsHandlers(); // For example, it could be any method
But it doesn't look very clean because I am using the NotificationService interface to "save" the current subclass. I think it shouldn't be his responsibility.
Maybe should I make another class which "saves" the current implementation? Or apply a singleton pattern? What is the OOP most correct way to do this?
Clarification: I am not asking for a personal opinion (otherwise this question should be close). I'm asking about the correct OOP solution.
In which language are you programming? Java probably, by reading your Code.
What you actually want is Dependency Injection and a Singleton (even though I think that Singleton is overkill for a NotificationService)
If we remain at the Java Standard, it works in this way:
The classes that need your NotificationService would have a constructor annotated with #Inject and an agument of type NotificationService (not your Implementation Class) - so your consumer classes rely on something abstract rather than something concrete, which makes it easier to change the implementation.
The Dependency Injection Container or Framework would take care that when your classes are being injected by them self somewhere, that their Dependencies are being satisfied in order to be able to construct this class.
How does it actually know which Implementation belongs to an Interface?
Well it depends on the Framework or Platform you are using but you either define your bindings of the interface to the concrete class or is is looking it up with reflection (if we are using Java)
If a class gets injected with a new Instance every time or always the same instance this depends on your annotations on the class itself. For example you could annotate it with #Singleton.
I hope it helps a bit.

Network storage design pattern

Let's say I have a few controllers. Each controller can at some point create new objects which will need to be stored on the server. For example I can have a RecipeCreationViewController which manages a form. When this form is submitted, a new Recipe object is created and needs to be saved on the server.
What's the best way to design the classes to minimize complexity and coupling while keeping the code as clean and readable as possible?
Singleton
Normally I would create a singleton NetworkAdapter that each controller can access directly in order to save objects.
Example:
[[[NetworkAdapter] sharedAdapter] saveObject:myRecipe];
But I've realized that having classes call singletons on their own makes for coupled code which is hard to debug since the access to the singleton is hidden in the implementation and not obvious from the interface.
Direct Reference
The alternative is to have each controller hold a reference to the NetworkAdapter and have this be passed in by the class that creates the controller.
For example:
[self.networkAdapter saveObject:myRecipe];
Delegation
The other approach that came to mind is delegation. The NetworkAdapter can implement a "RemoteStorageDelegate" protocol and each controller can have a remoteStorageDelegate which it can call methods like saveObject: on. The advantage being that the controllers don't know about the details of a NetworkAdapter, only that the object that implements the protocol knows how to save objects.
For example:
[self.remoteStorageDelegate saveObject:myRecipe];
Direct in Model
Yet another approach would be to have the model handle saving to the network directly. I'm not sure if this is a good idea though.
For example:
[myRecipe save];
What do you think of these? Are there any other patterns that make more sense for this?
I would also stick with Dependency Injection in your case. If you want to read about that you will easily find good articles in the web, e.g. on Wikipedia. There are also links to DI frameworks in Objective C.
Basically, you can use DI if you have two or more components, which must interact but shouldn't know each other directly in code. I'll elaborate your example a bit, but in C#/Java style because I don't know Objective C syntax. Let's say you have
class NetworkAdapter implements NetworkAdapterInterface {
void save(object o) { ... }
}
with the interface
interface NetworkAdapterInterface {
void save(object o);
}
Now you want to call that adapter in a controller like
class Controller {
NetworkAdapterInterface networkAdapter;
Controller() {
}
void setAdapter(NetworkAdapterInterface adapter) {
this.networkAdapter = adapter;
}
void work() {
this.networkAdapter.save(new object());
}
}
Calling the Setter is where now the magic of DI can happen (called Setter Injection; there is also e.g. Constructor Injection). That means that you haven't a single code line where you call the Setter yourself, but let it do the DI framework. Very loose coupled!
Now how does it work? Typically with a common DI framework you can define the actual mappings between components in a central code place or in a XML file. Image you have
<DI>
<component="NetworkAdapterInterface" class="NetworkAdapter" lifecycle="singleton" />
</DI>
This could tell the DI framework to automatically inject a NetworkAdapter in every Setter for NetworkAdapterInterface it finds in your code. In order to do this, it will create the proper object for you first. If it builds a new object for every injection, or only one object for all injections (Singleton), or e.g. one object per Unit of Work (if you use such a pattern), can be configured for each type.
As a sidenote: If you are unit testing your code, you can also use the DI framework to define completely other bindings, suitable for your test szenario. Easy way to inject some mocks!

adapter pattern and dependency

I have little doubt about adapter class. I know what's the goal of adapter class. And when should be used. My doubt is about class construction. I've checked some tutorials and all of them say that I should pass "Adaptee" class as a dependency to my "Adapter".
e.g.
Class SampleAdapter implements MyInterface
{
private AdapteeClass mInstance;
public SampleAdapter(AdapteeClass instance)
{
mInstance=instance;
}
}
This example is copied from wikipedia. As you can see AdapteeClass is passed to my object as dependency. The question is why? If I'm changing interface of an object It's obvious I'm going to use "new" interface and I won't need "old" one. Why I need to create instance of "old" class outside my adapter. Someone may say that I should use dependency injection so I can pass whatever I want, but this is adapter - I need to change interface of concrete class. Personally I think code bellow is better.
Class SampleAdapter implements MyInterface
{
private AdapteeClass mInstance;
public SampleAdapter()
{
mInstance= new AdapteeClass();
}
}
What is your opinion?
I would say that you should always avoid the new operator in a class when it comes to complex objects (except when the class is a Builder or Factory) to reduce coupling and make your code better testable. Off course objects like a List or Dictionary or value objects can be constructed inside a class method (which is probably the purpose of the class method!)
Lets say for example that your AdapteeClass is a Remote Proxy. If you want to use Unit Testing, your unit tests will have to use the real proxy class because there is no way to replace it in your unit tests.
If you use the first approach, you can easily inject a mock or fake into the constructor when running your unit test so you can test all code paths.
Google has a guide on writing testable code which describes this in more detail but some important points are:
Warning Signs for not testable code
new keyword in a constructor or at field declaration
Static method calls in a constructor or at field declaration
Anything more than field assignment in constructors
Object not fully initialized after the constructor finishes (watch out for initialize methods)
Control flow (conditional or looping logic) in a constructor
Code does complex object graph construction inside a constructor rather than using a factory or builder
Adding or using an initialization block
AdapteeClass can have one or more non-trivial constructors. In this case you'll need to duplicate all of them in your SampleAdapter constructor to have the same flexibility. Passing already constructed object is simpler.
I think creating the Adaptee inside the Adapter is limiting. What if some day you want to adapt a pre-existing instance?
To be honest though, I'd do both if at all possible.
Class SampleAdapter implements MyInterface
{
private AdapteeClass mInstance;
public SampleAdapter()
: base (new AdapteeClass())
{
}
public SampleAdapter(AdapteeClass instance)
{
mInstance=instance;
}
}
Let's assume you have an external hard drive with a regular USB port and you are trying to hook it up with a Mac which only has type-c ports. Yes, you can buy a new drive which has a type-c port but what about the data in it?
It's the same for the adapter pattern. There're times you initialize AdapteeClass with tons of flavors. When you do the conversion, you want to keep all the context.

Interface reference variables

I am going over some OO basics and trying to understand why is there a use of Interface reference variables.
When I create an interface:
public interface IWorker
{
int HoneySum { get; }
void getHoney();
}
and have a class implement it:
public class Worker : Bee, IWorker
{
int honeySum = 15;
public int HoneySum { get { return honeySum; } }
public void getHoney()
{
Console.WriteLine("Worker Bee: I have this much honey: {0}", HoneySum);
}
}
why do people use:
IWorker worker = new Worker();
worker.getHoney();
instead of just using:
Worker worker3 = new Worker();
worker3.getHoney();
whats the point of a interface reference variable when you can just instatiate the class and use it's methods and fields that way?
If your code knows what class will be used, you are right, there is no point in having an interface type variable. Just like in your example. That code knows that the class that will be instantiated is Worker, because that code won't magically change and instantiate anything else than Worker. In that sense, your code is coupled with the definition and use of Worker.
But you might want to write some code that works without knowing the class type. Take for example the following method:
public void stopWorker(IWorker worker) {
worker.stop(); // Assuming IWorker has a stop() method
}
That method doesn't care about the specific class. It would handle anything that implements IWorker.
That is code you don't have to change if you want later to use a different IWorker implementation.
It's all about low coupling between your pieces of code. It's all about maintainability.
Basically it's considered good programming practice to use the interface as the type. This allows different implementations of the interface to be used without effecting the code. I.e. if the object being assigned was passed in then you can pass in anything that implements the interface without effecting the class. However if you use the concrete class then you can only passin objects of that type.
There is a programming principle I cannot remember the name of at this time that applies to this.
You want to keep it as generic as possible without tying to specific implementation.
Interfaces are used to achieve loose coupling between system components. You're not restricting your system to the specific concrete IWorker instance. Instead, you're allowing the consumer to specify which concrete implementation of IWorker they'd like to use. What you get out of it is loosely dependent components and better flexibility.
One major reason is to provide compatibility with existing code. If you have existing code that knows how to manipulate objects via some particular interface, you can instantly make your new code compatible with that existing code by implementing that interface.
This kind of capability becomes particularly important for long-term maintenance. You already have an existing framework, and you typically want to minimize changes to other code to fit your new code into the framework. At least in the ideal case, you do this by writing your new code to implement some number of existing interfaces. As soon as you do, the existing code that knows how to manipulate objects via those interfaces can automatically work with your new class just as well as it could with the ones for which it was originally designed.
Think about interfaces as protocols and not classes i.e. does this object implement this protocol as distinct from being a protocol? For example can my number object be serialisable? Its class is a number but it might implement an interface that describes generally how it can be serialised.
A given class of object may actually implement many interfaces.

Alternatives for the singleton pattern?

I have been a web developer for some time now using ASP.NET and C#, I want to try and increase my skills by using best practices.
I have a website. I want to load the settings once off, and just reference it where ever I need it. So I did some research and 50% of the developers seem to be using the singleton pattern to do this. And the other 50% of the developers are ant-singleton. They all hate singletons. They recommend dependency injection.
Why are singletons bad? What is best practice to load websites settings? Should they be loaded only once and referenced where needed? How would I go about doing this with dependency injection (I am new at this)? Are there any samples that someone could recommend for my scenario? And I also would like to see some unit test code for this (for my scenario).
Thanks
Brendan
Generally, I avoid singletons because they make it harder to unit test your application. Singletons are hard to mock up for unit tests precisely because of their nature -- you always get the same one, not one you can configure easily for a unit test. Configuration data -- strongly-typed configuration data, anyway -- is one exception I make, though. Typically configuration data is relatively static anyway and the alternative involves writing a fair amount of code to avoid the static classes the framework provides to access the web.config anyway.
There are a couple of different ways to use it that will still allow you to unit test you application. One way (maybe both ways, if your singleton doesn't lazily read the app.cofnig) is to have a default app.config file in your unit test project providing the defaults required for your tests. You can use reflection to replace any specific values as needed in your unit tests. Typically, I'd configure a private method that allows the private singleton instance to be deleted in test set up if I do make changes for particular tests.
Another way is to not actually use the singleton directly, but create an interface for it that the singleton class implements. You can use hand injection of the interface, defaulting to the singleton instance if the supplied value is null. This allows you to create a mock instance that you can pass to the class under test for your tests, but in your real code use the singleton instance. Essentially, every class that needs it maintains a private reference to the singleton instance and uses it. I like this way a little better, but since the singleton will be created you may still need the default app.config file, unless all of the values are lazily loaded.
public class Foo
{
private IAppConfiguration Configuration { get; set; }
public Foo() : this(null) { }
public Foo( IAppConfiguration config )
{
this.Configuration = config ?? AppConfiguration.Instance;
}
public void Bar()
{
var value = this.Config.SomeMaximum;
...
}
}
There's a good discussion of singleton patterns, and coding examples here... http://en.wikipedia.org/wiki/Singleton_pattern See also here... http://en.wikipedia.org/wiki/Dependency_injection
For some reason, singletons seem to divide programmers into strong pro- and anti- camps. Whatever the merits of the approach, if your colleagues are against it, it's probably best not to use one. If you're on your own, try it and see.
Design Patterns can be amazing things. Unfortunately, the singleton seems to stick out like a sore thumb and in many cases can be considered an anti-pattern (it promotes bad practices). Bizarely, the majority of developers will only know one design pattern, and that is the singleton.
Ideally your settings should be a member variable in a high level location, for example the application object which owns the webpages you are spawning. The pages can then ask the app for the settings, or the application can pass the settings as pages are constructed.
One way to approach this problem, is to flog it off as a DAL problem.
Whatever class / web page, etc. needs to use config settings should declare a dependency on an IConfigSettingsService (factory/repository/whatever-you-like-to-call-them).
private IConfigSettingsService _configSettingsService;
public WebPage(IConfigSettingsService configSettingsService)
{
_configSettingsService = configSettingsService;
}
So your class would get settings like this:
ConfigSettings _configSettings = _configSettingsService.GetTheOnlySettings();
the ConfigSettingsService implementation would have a dependency which is Dal class. How would that Dal populate the ConfigSettings object? Who cares.
Maybe it would populate a ConfigSettings from a database or .config xml file, every time.
Maybe it do that the first time but then populate a static _configSettings for subsequent calls.
Maybe it would get the settings from Redis. If something indicates the settings have changed then the dal, or something external, can update Redis. (This approach will be useful if you have more than one app using the settings.
Whatever it does, your only dependency is a non-singleton service interface. That is very easy to mock. In your tests you can have it return a ConfigSettings with whatever you want in it).
In reality it would more likely be MyPageBase which has the IConfigSettingsService dependency, but it could just as easily be a web service, windows service, MVC somewhatsit, or all of the above.