Working on a data warehouse, a suitable analogy for the problem is that we have Healthcare Practitioners. Healthcare Practitioners have a number of professional attributes and work in an open number of teams and in an open number of clinical areas.
For example, you may have a nurse who works in children's services across a number of teams as a relief/contractor/bank staff person. Or you may have a newly qualified doctor who works general medicine who is doing time in a special area pending qualifying as a consultant of that special area.
So we have an open number of areas of work and an open number of teams, we can't have team 1, team 2 etc in our dimensions. The other attributes may change over time also, like base location (where they work out of), the main team and area they work in..
So, following Kimble I've gone for outriggers:
Table DimHealthProfessionals:
Key (primary key, identity)
Name
Main Team
Main Area of Work
Base Location
Other Attribute 1
Other Attribute 2
Start Date
End Date
Table OutriggerHealthProfessionalTeam:
HPKey (foreign key to DimHealthPRofessionals.Key)
Team Name
Team Type
Other Team Attribute 1
Other Team Attribute 2
Table OutriggerHealthProfessionalAreaOfWork:
HPKey (as above)
Area of Work
Other AoW attribute 1
If any attribute of the HP changes, or the combination of teams or areas of work in which they work change, we need to create a new entry in the SCD and it's outrigger tables to encapsulate this.
And we're doing this in SSIS.
The source data is basically an HP table with the main attributes, a table of areas of work, a table of teams and a pair of mapping tables to map a current set of areas of work to an HP.
I have three data sources, one brings in the HCP information, one the areas of work of all HCPs and one the team memberships.
The problem is how to run over all three datasets to determine if an HP has changed an attribute, and if they have changed an attribute, how we update the DIM and two outriggers appropriately.
Can anyone point me at a best practice for this? OR suggest an alternative way of modelling this dimension?
Admittedly I may not understand everything here, but it seems to me that the relationship in this example should be reversed. Place TeamKey and the WorkAreaKey in the dimHealthProfessionals -- this should simplify things.
With this in place, you simply make sure to deliver outriggers before the dimHealthProfessionals.
Treat outriggers as dimensions in their own right. You may want to treat dimHealthProfessionals as a type 2 dimension, to properly capture the history.
EDIT
Considering that team to person is many-to-many, a fact is more appropriate.
A column in a dimension table is appropriate only if a person can belong to only one team at a time. Same with work areas.
The problem is how to run over all three datasets to determine if an HP has changed an attribute, and if they have changed an attribute, how we update the DIM and two outriggers appropriately.
Can anyone point me at a best practice for this? OR suggest an alternative way of modelling this dimension?
I'm not sure I understand your question fully. If you are unsure about change detection, then use Checksums in the package. Build up a temp table with the data as it is in the source, then compare each row to its counterpart (joined via the business keys) by computing the checksum for both rows and comparing those. If they differ, the data has changed.
If you are talking about cascading updates in a historized dimension hierarchy (and you can treat the outriggers like a hierarchy in this context) then the foreign key lookups will automatically lookup the newer entry in DimHealthProfessionals if you have a historization (i.e. have validFrom / validThrough timestamps in DimHealthProfessionals). Those different foreign keys result in a different checksum.
Related
I am trying to make simple app for chess tournaments, but I have problem with database, I have users that participate in tournament (thats fine) but how do I give users to the round and match, should i make another relations user_tournament-round-tournament, user_tournament-match-round?
Please see this answers a food for though rather than a solution. In your question there is not enough information to fully cover all use cases, so the answer below contains a lot of speculation.
In my over simplistic view and picking up on your initial model, the tournament_competitors (renaming from user_tournament as we have competitors and not users) table would create a unique id for each enrolled competitor. This id would be used as a reference in a tournament_matches table (the table would link twice to the tournament_competitors this table would connect two opponents - constraint warning). The table would also register the match type.
For the match type, I see two possibilities.
The matches table would list all possible match types (final, semi-final, quarter-final, elimination rounds, etc.) and these would be referred to in the tournament_matches table via id (composite key in the form tournament_id-competitor_id-group_id). This approach, specially for the elimination round matches, requires the need to find a way to link the number of competitors in each elimination group with then number of matches each competitor has to through before they are considered eliminated or not - creating a round number. I see this as a business logic part so not on the DB. The group_id also needs to be calculated and it would be best done on the application.
The alternative is to have the various match types in the tournament_matches table as a free field - populated by the application. The tournament structure (Number of Groups, number of opponents in each group, etc.) would be defined as attributes in the tournaments table. In this view there is no need for the rounds table.
I'm working on a database to hold information for an on-call schedule. Currently I have a structure that looks about like this:
Table - Person: (key)ID, LName, FName, Phone, Email
Table - PersonTeam: (from Person)ID, (from Team)ID
Table - Team: (key)ID, TeamName
Table - Calendar: (key dateTime)dt, year, month, day, etc...
Table - Schedule: (from Calendar)dt, (id of Person)OnCall_NY, (id of Person)OnCall_MA, (id of Person)OnCall_CA
My question is: With the Schedule table, should I leave it structured as is, where the dt is a unique key, or should I rearrange it so that dt is non-unique and the table looks like this:
Table - Schedule: (from Calendar)dt, (from Team)ID, (from Person)ID
and have multiple entries for each day, OR would it make sense to just use:
Table - Schedule: (from Calendar)dt, (from PersonTeam)KeyID - [make a key ID on each of the person/team pairings]
A team will always have someone on call, but a person can be on call for more than one team at a time (if they are on multiple teams).
If a completely different setup would work better let me know too!
Thanks for any help! I apologize if my question is unclear. I'm learning fast but nevertheless still fairly new to using SQL daily, so I want to make sure I'm using best practices when I learn so I don't develop bad habits.
The current version, one column per team, is probably not a good idea. Since you're representing teams as a table (and not as an enum or equivalent), it means you expect to add/remove teams over time. That would force you to add/remove columns to the table, which is always a much larger task than adding/removing a few rows.
The 2nd option is the usual solution to a problem like this. A safe choice. You can always define an additional foreign key constraint from Schedule(teamID, personID) to PersonTeam to ensure you don't mistakenly assign schedule duty to a person not belonging to the team.
The 3rd option is pretty much equivalent to the 2nd, only you're swapping a composite natural key for PersonTeam for a surrogate simple key. Since the two components of said composite key are already surrogate, there is no advantage (in terms of immutability, etc.) to adding this additional one. Plus it would turn a very simple N-M relationship (PersonTeam) which most DB managers / ORMs will handle nicely into a more complex object which will need management on its own.
By Occam's razor, I'd do away with the additional surrogate key and use your 2nd option.
In my view, the answer may depend on whether the number of teams is fixed and fairly small. Of course, whether the names of the teams are fixed or not, may also matter, but that would probably have more to do with column naming.
More specifically, my view is this:
If the business requirement is to always have a small and fixed number of people (say, three) on call, then it may well be more convenient to allocate three columns in Schedule, one for every team to hold the ID of the appointed person, i.e. like your current structure:
dt OnCall_NY OnCall_MA OnCall_CA
--- --------- --------- ---------
with dt as the primary key.
If the number of teams (in the Team table) is fixed too, you could include teams' names/designators in the column names like you are doing now, but if the number of teams is more than three and it's just the number of teams in Schedule that is limited to three, then you could just use names like OnCallID1, OnCallID2, OnCallID3.
But even if that requirement is fixed, it may only turn out fixed today, and tomorrow your boss says, "We no longer work with a fixed number of teams (on call)", or "We need to extend the number of teams supported to four, and we may need to extend it further in the future". So, a more universal approach would be the one you are considering switching to in your question, that is
dt Team Person
--- ---- ------
where the primary key would now be dt, Team.
That way you could easily extend/reduce the number of people on call on the database level without having to change anything in the schema.
UPDATE
I forgot to address your third option in my original answer (sorry). Here goes.
Your first option (the one actually implemented at the moment) seems to imply that every team can be presented by (no more than) one person only. If you assign surrogate IDs to the Person/Team pairs and use those keys in Schedule instead of separate IDs for Person and Team, you will probably be unable to enforce the mentioned "one person per team in Schedule" requirement (or, at least, that might prove somewhat troublesome) at the database level, while, using separate keys, it would be just enough to set Team to be part of a composite key (dt, Team) and you are done, no more than one team per day now.
Also, you may have difficulties letting a person change the team over time if their presence in the team was fixated in this way, i.e. with a Schedule reference to the Person/Team pair. You would probably have to change the Team reference in the PersonTeam table, which would result in misrepresentation of historical info: when looking at the people on call back on certain day, the person's Team shown would be the one they belong to now, not the one they did then.
Using separate IDs for people and teams in Schedule, on the other hand, would allow you to let people change teams freely, provided you do not make (Schedule.Team, Schedule.Person) a reference to (PersonTeam.Team, PersonTeam.Person), of course.
I am developing a website for a dealer of wine and other alcoholic beverages. Obviously, each wine is made in a country that must be modeled in the Wine table.
But many times, a Wine also has a Region (Languedoc, Rioja, Bougogne etc.), these regions are of course in a parent-child relationship with a country.
THe following options exist:
-Giving the Wine table only a reference to a region
Problem is that some wines/whiskeys do not mention a region, only a country
-Giving the wine table 2 separate FK references, to a Country and a Region table. This introduces a circular reference and a redundacny problem becase country and region are already related.
-Using a Location table and a single FK referernce from the Wine table to the Location table. THe Location table is in fact a region or a country (maybe even a city) so it has a field "location_type" and a parent FK field, referring to its own PK. For the top-level Country entries, the parent id is null.
This is the example I have found somewhere in the internet. It will make however the queries more complex.
Is this a known problem, and are there any suggestions?
TIA, Klaas
I'm also working on an application in this domain. Common for wine, there is also the concept of sub-region or appellation, so you can have wines from France-Bourgogne-Cote d'Or, for example. I went with the second option you described, having FK references to Country, Region, and Subregion. Only the Country field is required, while the others are nullable. The potential issues with referential integrity are compounded with this model, but it greatly facilitates effective query based on these fields, which is kind of the point of capturing this information in the first place.
I think you might want to look at this from a dimensional analysis perspective, rather than a strict entity-relationship one. That is, a but of denormalization may be just what you are looking for. I would recommend Ralph Kimball's books on dimensional data warehouses, since they often solve this type of problem.
In your case, just create a "location" dimension that contains all the fields that you might be interested in, at the lowest level of granularity:
Region
Country
SubCountry
Are the two obvious ones. You might also have hillside, city, whatever.
To take an example, you would have the following rows:
Barolo/Italy/Piemonte
NULL/Italy/Piemonte
NULL/Italy/NULL
The wines would be connected to this table.
Now, you have a maintenance problem for this table. However, the universe of wines and official regions is well known and very slowly changing, so I don't see this as a problem.
Good point about creating a location dimension. This type of model addresses analysis more effectively, but is more complicated for transactional systems. This gets into the question of whether you're optimizing your model to handle CRUD-type transactions, or for aggregated data analysis.
On the whole, I assume that Klaus is looking at modeling for a transactional system with basic query, rather than an analysis-based application like a data warehouse.
I understand the concept of database normalization, but always have a hard time explaining it in plain English - especially for a job interview. I have read the wikipedia post, but still find it hard to explain the concept to non-developers. "Design a database in a way not to get duplicated data" is the first thing that comes to mind.
Does anyone has a nice way to explain the concept of database normalization in plain English? And what are some nice examples to show the differences between first, second and third normal forms?
Say you go to a job interview and the person asks: Explain the concept of normalization and how would go about designing a normalized database.
What key points are the interviewers looking for?
Well, if I had to explain it to my wife it would have been something like that:
The main idea is to avoid duplication of large data.
Let's take a look at a list of people and the country they came from. Instead of holding the name of the country which can be as long as "Bosnia & Herzegovina" for every person, we simply hold a number that references a table of countries. So instead of holding 100 "Bosnia & Herzegovina"s, we hold 100 #45. Now in the future, as often happens with Balkan countries, they split to two countries: Bosnia and Herzegovina, I will have to change it only in one place. well, sort of.
Now, to explain 2NF, I would have changed the example, and let's assume that we hold the list of countries every person visited.
Instead of holding a table like:
Person CountryVisited AnotherInformation D.O.B.
Faruz USA Blah Blah 1/1/2000
Faruz Canada Blah Blah 1/1/2000
I would have created three tables, one table with the list of countries, one table with the list of persons and another table to connect them both. That gives me the most freedom I can get changing person's information or country information. This enables me to "remove duplicate rows" as normalization expects.
One-to-many relationships should be represented as two separate tables connected by a foreign key. If you try to shove a logical one-to-many relationship into a single table, then you are violating normalization which leads to dangerous problems.
Say you have a database of your friends and their cats. Since a person may have more than one cat, we have a one-to-many relationship between persons and cats. This calls for two tables:
Friends
Id | Name | Address
-------------------------
1 | John | The Road 1
2 | Bob | The Belltower
Cats
Id | Name | OwnerId
---------------------
1 | Kitty | 1
2 | Edgar | 2
3 | Howard | 2
(Cats.OwnerId is a foreign key to Friends.Id)
The above design is fully normalized and conforms to all known normalization levels.
But say I had tried to represent the above information in a single table like this:
Friends and cats
Id | Name | Address | CatName
-----------------------------------
1 | John | The Road 1 | Kitty
2 | Bob | The Belltower | Edgar
3 | Bob | The Belltower | Howard
(This is the kind of design I might have made if I was used to Excel-sheets but not relational databases.)
A single-table approach forces me to repeat some information if I want the data to be consistent. The problem with this design is that some facts, like the information that Bob's address is "The belltower" is repeated twice, which is redundant, and makes it difficult to query and change data and (the worst) possible to introduce logical inconsistencies.
Eg. if Bob moves I have to make sure I change the address in both rows. If Bob gets another cat, I have to be sure to repeat the name and address exactly as typed in the other two rows. E.g. if I make a typo in Bob's address in one of the rows, suddenly the database has inconsistent information about where Bob lives. The un-normalized database cannot prevent the introduction of inconsistent and self-contradictory data, and hence the database is not reliable. This is clearly not acceptable.
Normalization cannot prevent you from entering wrong data. What normalization prevents is the possibility of inconsistent data.
It is important to note that normalization depends on business decisions. If you have a customer database, and you decide to only record a single address per customer, then the table design (#CustomerID, CustomerName, CustomerAddress) is fine. If however you decide that you allow each customer to register more than one address, then the same table design is not normalized, because you now have a one-to-many relationship between customer and address. Therefore you cannot just look at a database to determine if it is normalized, you have to understand the business model behind the database.
This is what I ask interviewees:
Why don't we use a single table for an application instead of using multiple tables ?
The answer is ofcourse normalization. As already said, its to avoid redundancy and there by update anomalies.
This is not a thorough explanation, but one goal of normalization is to allow for growth without awkwardness.
For example, if you've got a user table, and every user is going to have one and only one phone number, it's fine to have a phonenumber column in that table.
However, if each user is going to have a variable number of phone numbers, it would be awkward to have columns like phonenumber1, phonenumber2, etc. This is for two reasons:
If your columns go up to phonenumber3 and someone needs to add a fourth number, you have to add a column to the table.
For all the users with fewer than 3 phone numbers, there are empty columns on their rows.
Instead, you'd want to have a phonenumber table, where each row contains a phone number and a foreign key reference to which row in the user table it belongs to. No blank columns are needed, and each user can have as few or many phone numbers as necessary.
One side point to note about normalization: A fully normalized database is space efficient, but is not necessarily the most time efficient arrangement of data depending on use patterns.
Skipping around to multiple tables to look up all the pieces of info from their denormalized locations takes time. In high load situations (millions of rows per second flying around, thousands of concurrent clients, like say credit card transaction processing) where time is more valuable than storage space, appropriately denormalized tables can give better response times than fully normalized tables.
For more info on this, look for SQL books written by Ken Henderson.
I would say that normalization is like keeping notes to do things efficiently, so to speak:
If you had a note that said you had to
go shopping for ice cream without
normalization, you would then have
another note, saying you have to go
shopping for ice cream, just one in
each pocket.
Now, In real life, you would never do
this, so why do it in a database?
For the designing and implementing part, thats when you can move back to "the lingo" and keep it away from layman terms, but I suppose you could simplify. You would say what you needed to at first, and then when normalization comes into it, you say you'll make sure of the following:
There must be no repeating groups of information within a table
No table should contain data that is not functionally dependent on that tables primary key
For 3NF I like Bill Kent's take on it: Every non-key attribute must provide a fact about the key, the whole key, and nothing but the key.
I think it may be more impressive if you speak of denormalization as well, and the fact that you cannot always have the best structure AND be in normal forms.
Normalization is a set of rules that used to design tables that connected through relationships.
It helps in avoiding repetitive entries, reducing required storage space, preventing the need to restructure existing tables to accommodate new data, increasing speed of queries.
First Normal Form: Data should be broken up in the smallest units. Tables should not contain repetitive groups of columns. Each row is identified with one or more primary key.
For example, There is a column named 'Name' in a 'Custom' table, it should be broken to 'First Name' and 'Last Name'. Also, 'Custom' should have a column named 'CustiomID' to identify a particular custom.
Second Normal Form: Each non-key column should be directly related to the entire primary key.
For example, if a 'Custom' table has a column named 'City', the city should has a separate table with primary key and city name defined, in the 'Custom' table, replace the 'City' column with 'CityID' and make 'CityID' the foreign key in the tale.
Third normal form: Each non-key column should not depend on other non-key columns.
For example, In an order table, the column 'Total' is dependent on 'Unit price' and 'quantity', so the 'Total' column should be removed.
I teach normalization in my Access courses and break it down a few ways.
After discussing the precursors to storyboarding or planning out the database, I then delve into normalization. I explain the rules like this:
Each field should contain the smallest meaningful value:
I write a name field on the board and then place a first name and last name in it like Bill Lumbergh. We then query the students and ask them what we will have problems with, when the first name and last name are all in one field. I use my name as an example, which is Jim Richards. If the students do not lead me down the road, then I yank their hand and take them with me. :) I tell them that my name is a tough name for some, because I have what some people would consider 2 first names and some people call me Richard. If you were trying to search for my last name then it is going to be harder for a normal person (without wildcards), because my last name is buried at the end of the field. I also tell them that they will have problems with easily sorting the field by last name, because again my last name is buried at the end.
I then let them know that meaningful is based upon the audience who is going to be using the database as well. We, at our job will not need a separate field for apartment or suite number if we are storing people's addresses, but shipping companies like UPS or FEDEX might need it separated out to easily pull up the apartment or suite of where they need to go when they are on the road and running from delivery to delivery. So it is not meaningful to us, but it is definitely meaningful to them.
Avoiding Blanks:
I use an analogy to explain to them why they should avoid blanks. I tell them that Access and most databases do not store blanks like Excel does. Excel does not care if you have nothing typed out in the cell and will not increase the file size, but Access will reserve that space until that point in time that you will actually use the field. So even if it is blank, then it will still be using up space and explain to them that it also slows their searches down as well.
The analogy I use is empty shoe boxes in the closet. If you have shoe boxes in the closet and you are looking for a pair of shoes, you will need to open up and look in each of the boxes for a pair of shoes. If there are empty shoe boxes, then you are just wasting space in the closet and also wasting time when you need to look through them for that certain pair of shoes.
Avoiding redundancy in data:
I show them a table that has lots of repeated values for customer information and then tell them that we want to avoid duplicates, because I have sausage fingers and will mistype in values if I have to type in the same thing over and over again. This “fat-fingering” of data will lead to my queries not finding the correct data. We instead, will break the data out into a separate table and create a relationship using a primary and foreign key field. This way we are saving space because we are not typing the customer's name, address, etc multiple times and instead are just using the customer's ID number in a field for the customer. We then will discuss drop-down lists/combo boxes/lookup lists or whatever else Microsoft wants to name them later on. :) You as a user will not want to look up and type out the customer's number each time in that customer field, so we will setup a drop-down list that will give you a list of customer, where you can select their name and it will fill in the customer’s ID for you. This will be a 1-to-many relationship, whereas 1 customer will have many different orders.
Avoiding repeated groups of fields:
I demonstrate this when talking about many-to-many relationships. First, I draw 2 tables, 1 that will hold employee information and 1 that will hold project information. The tables are laid similar to this.
(Table1)
tblEmployees
* EmployeeID
First
Last
(Other Fields)….
Project1
Project2
Project3
Etc.
**********************************
(Table2)
tblProjects
* ProjectNum
ProjectName
StartDate
EndDate
…..
I explain to them that this would not be a good way of establishing a relationship between an employee and all of the projects that they work on. First, if we have a new employee, then they will not have any projects, so we will be wasting all of those fields, second if an employee has been here a long time then they might have worked on 300 projects, so we would have to include 300 project fields. Those people that are new and only have 1 project will have 299 wasted project fields. This design is also flawed because I will have to search in each of the project fields to find all of the people that have worked on a certain project, because that project number could be in any of the project fields.
I covered a fair amount of the basic concepts. Let me know if you have other questions or need help with clarfication/ breaking it down in plain English. The wiki page did not read as plain English and might be daunting for some.
I've read the wiki links on normalization many times but I have found a better overview of normalization from this article. It is a simple easy to understand explanation of normalization up to fourth normal form. Give it a read!
Preview:
What is Normalization?
Normalization is the process of
efficiently organizing data in a
database. There are two goals of the
normalization process: eliminating
redundant data (for example, storing
the same data in more than one table)
and ensuring data dependencies make
sense (only storing related data in a
table). Both of these are worthy goals
as they reduce the amount of space a
database consumes and ensure that data
is logically stored.
http://databases.about.com/od/specificproducts/a/normalization.htm
Database normalization is a formal process of designing your database to eliminate redundant data. The design consists of:
planning what information the database will store
outlining what information users will request from it
documenting the assumptions for review
Use a data-dictionary or some other metadata representation to verify the design.
The biggest problem with normalization is that you end up with multiple tables representing what is conceptually a single item, such as a user profile. Don't worry about normalizing data in table that will have records inserted but not updated, such as history logs or financial transactions.
References
When not to Normalize your SQL Database
Database Design Basics
+1 for the analogy of talking to your wife. I find talking to anyone without a tech mind needs some ease into this type of conversation.
but...
To add to this conversation, there is the other side of the coin (which can be important when in an interview).
When normalizing, you have to watch how the databases are indexed and how the queries are written.
When in a truly normalized database, I have found that in situations it's been easier to write queries that are slow because of bad join operations, bad indexing on the tables, and plain bad design on the tables themselves.
Bluntly, it's easier to write bad queries in high level normalized tables.
I think for every application there is a middle ground. At some point you want the ease of getting everything out a few tables, without having to join to a ton of tables to get one data set.
Consider a database with tables Products and Employees. There is a new requirement to model current product managers, being the sole employee responsible for a product, noting that some products are simple or mature enough to require no product manager. That is, each product can have zero or one product manager.
Approach 1: alter table Product to add a new NULLable column product_manager_employee_ID so that a product with no product manager is modelled by the NULL value.
Approach 2: create a new table ProductManagers with non-NULLable columns product_ID and employee_ID, with a unique constraint on product_ID, so that a product with no product manager is modelled by the absence of a row in this table.
There are other approaches but these are the two I seem to encounter most often.
Assuming these are both legitimate design choices (as I'm inclined to believe) and merely represent differing styles, do they have names? I prefer approach 2 and find it hard to convey the difference in style to someone who prefers approach 1 without employing an actual example (as I have done here!) I'd would be nice if I could say, "I'm prefer the inclination-towards-6NF (or whatever) style myself."
Assuming one of these approaches is in fact an anti-pattern (as I merely suspect may be the case for approach 1 by modelling a relationship between two entities as an attribute of one of those entities) does this anti-pattern have a name?
Well the first is nothing more than a one-to-many relationship (one employee to many products). This is sometimes referred to as a O:M relationship (zero to many) because it's optional (not every product has a product manager). Also not every employee is a product manager so its optional on the other side too.
The second is a join table, usually used for a many-to-many relationship. But since one side is only one-to-one (each product is only in the table once) it's really just a convoluted one-to-many relationship.
Personally I prefer the first one but neither is wrong (or bad).
The second would be used for two reasons that come to mind.
You envision the possibility that a product will have more than one manager; or
You want to track the history of who the product manager is for a product. You do this with, say a current_flag column set to 'Y' (or similar) where only one at a time can be current. This is actually a pretty common pattern in database-centric applications.
It looks to me like the two model different behaviour. In the first example, you can have one product manager per product and one employee can be product manager for more than one product (one to many). The second appears to allow for more than one product manager per product (many to many). This would suggest the two solutions are equally valid in different situations and which one you use would depend on the business rule.
There is a flaw in the first approach. Imagine for a second, that the business requirements have changed and now you need to be able to set 2 Product Manager to a product. What will you do? Add another column to the table Product? Yuck. This obviously violates 1NF then.
Another option the second approach gives is an ability to store some attributes for a certain Product Manager <-> Product relation. Like, if you have two Product Manager for a product, then you can set one of them as a primary...
Or, for example, an employee can have a phone number, but as a product manager he/she can have another phone number... This also goes to the special table then.
Approach 1)
Slows down the use of the Product table with the additional Product Manager field (maybe not for all databases but for some).
Linking from the Product table to the Employee table is simple.
Approach 2)
Existing queries using the Product table are not affected.
Increases the size of your database. You've now duplicated the Product ID column to another table as well as added unique constraints and indexes to that table.
Linking from the Product table to the Employee table is more cumbersome and costly as you have to ink to the intermediate table first.
How often must you link between the two tables?
How many other queries use the Product table?
How many records in the Product table?
in the particular case you give, i think the main motivation for two tables is avoiding nulls for missing data and that's how i would characterise the two approaches.
there's a discussion of the pros and cons on wikipedia.
i am pretty sure that, given c date's dislike of this, he defines relational theory so that only the multiple table solution is "valid". for example, you could call the single table approach "poorly typed" (since the type of null is unclear - see quote on p4).