NSDecimalNumber for intensive scientific applications? - objective-c

Let's say I'm writing a "DayData" class, containing the ivars
NSString *symbol; //such as "AAPL"
NSString *currency; //such as "USD"
NSDate *day;
double open;
double high;
double low;
double close;
The last four ivars are the open,high,low,close prices of that stock for that day.
Say I'm using this class as the fundamental building-block class behind intensive Monte Carlo simulations along many decades, i.e. thousands of days, of historical data. This means I'd have to access these ivars thousands if not millions if not billions of times in a short period of time to make the simulations as fast as possible.
Question: Should I stick to double, or should I still use NSDecimalNumber? How fast is NSDecimalNumber, really? Has anyone here tested NSDecimalNumber for intensive scientific applications?

Faster than NSDecimalNumber would be NSDecimal, which isn't an Obj-C object, so doesn't incur the overhead of objc_msgSend, but still has the advantages of decimal math. Here are the functions to work with NSDecimals.

As jtbandes has said, you should use NSDecimal if you want speed, NSDecimalNumber is an Obj-C object wrapper around NSDecimal. NSDecimal is a struct used to represent decimal numbers, which allows you to do calculations that don't give binary->decimal rounding and representation errors.
I would go with double, since it's a simulation, where the last ounce of accuracy probably won't matter anyway (presumably your simulation includes approximation, so minuscule errors won't have too much of an effect). You need to beware of the pitfalls of floating point calculations - certain types of operations can lead to larger errors, especially if the magnitude of two floating point numbers are very different, or if you subtract one number from another that is very close. This page on Wikipedia covers a few of the pitfalls.

If you are dealing with dollars and cents (but always whole cents), nothing is faster or more efficient than a regular int counting the cents, and dividing by 100 to get dollars.

Related

Why kotlin.math functions does not have implementation of Long

I have been working with kotlin for little over 2 years now.
Looking over what I learned in these 2 years, I noticed that I have been using(num.toDouble()).toLong() for kotlin.math functions a bit too much. For example, Math.sqrt(num.toDouble()).toLong(). Two of my projects have extension function sumByLong() inside util created by team, because kotlin libs only have sumBy:Int and sumByDouble:Double and a lot of work in the project, uses Long.
In short, Mathematical operations using Long is more common than using Double or Float, yet Long has a very small footprint in kotlin standard library. And since kotlin.math is different than java.lang.Math, mixed usage is not a recommended practice.
Going over docs of kotlin.math, all functions except for abs, min, max, only have implementation for Float and Double only.
Can someone Explain like I am 5 the possible reasoning behind this. Something real, not silly stuff like devs were lazy, or more code means more work, which is all I could find in search engine results.
--
Update: Some Clarification
1. I can understand that in most cases, return types will contain floating point numbers. I am also talking about parameters lacking long counterpart. Maybe using Math.sqrt wasn't the best example, something like math.log, math.cos, etc would be better example, where floating return type us expected, but parameters doesn't even support Int
2. When I said "Long is more common than using Double", I was not talking about public at large, but was looking over my past two years working with kotlin. I am sorry if my phrasing wasn't clear.
Disclaimer: this answer may be a little opinionated, but I believe it is according to general consensus and best practices of using maths in computer science.
Mathematics for integers and for real numbers (floats) are really two much different math "sub-worlds". They're pretty separate, they have different uses and we usually don't mix them.
If we work on some physics, we do real-world simulations, we operate on units like temperature or speed, we use doubles. If we have identifiers (bank account number), we count something (number of bank accounts) or we operate on a discrete values with 100% precision (bank account value) we always use integers and never doubles.
Operations like sinus, square root or logarithm make perfect sense for physics, but not really for bank account values. They very often produce either very small or very large numbers that can't be safely represented as integers. They operate on approximations and don't really provide 100% precise results. They are continuous by nature while integers are discrete.
What is the point of using integers with sqrt() or log() if they almost always return a floating point result? What is the point of passing an integer to sin() if e.g. there are only 2 distinct angles smaller than square angle that can be represented as an integer: 0 and 1? Using integers with these functions is unnatural and impractical.
I can't think of a case where we have to often convert between longs and doubles. Usually, we operate either on longs or on doubles top to bottom and we don't convert between them too often. By converting we lose advantages of these specific "math sub-worlds", we sum their disadvantages. Maybe you should just keep using doubles in your application and don't convert to/from longs? Why do you use longs?
BTW, you mentioned that you can't/shouldn't use java.lang.Math in the Kotlin application. Well, if you look into java.lang.Math you will notice that... it supports only doubles :-)
In the case of ceil, it returns a Double because a Double has a bigger range of values than Long. Consider, for example:
ceil(Long.MAX_VALUE.toDouble() * 1000)
What would you expect it to return if it returned a Long? For further discussion, see Why does Math.ceil return a double?
In the case of log and trigonometric functions, the use cases requiring Long parameters are rare and the requirements varied. For example, should it round up, down, or to the nearest integral value? These are decisions that should be made for your particular project, and therefore can't be made in the stdlib.
In your project, you can simply define your required functions in a single, small source file, making your project's choice of rounding method, and then use it everywhere instead of converting at each call site, e.g.:
fun cos(n: Long): Long = cos(x.toDouble()).roundToLong()

When to use decimals or doubles

Quick Aside: I'm going to use the word "Float" to refer to both a .Net float and a SQL float with only 7 significant digits. I will use the word "Double" to refer to a .Net double and a SQL float with 15 significant digits. I also realize that this is very similar to some other posts regarding decimals/doubles, but the answers on those posts are really inconsistent, and I really want some recommendations for my specific circumstance...
I am part of a team that is rewriting an old application. The original app used floats (7 digits). This of course caused issues since the app conducted a lot of calculations and rounding errors accumulated very quickly. At some point, many of these floats were changed to decimals. Later, the floats (7) in the database all became doubles (15). After that we had several more errors with calculations involving doubles, and they too were changed to decimals.
Today about 1/3 of all of our floating point numbers in the database are decimals, the rest are doubles. My team wants to "standardize" all of our floating-point numbers in the database (and the new .Net code) to use either exclusively decimals or doubles except in cases where the other MUST be used. The majority of the team is set on using decimals; I'm the only person on my team advocating using doubles instead of decimals. Here's why...
Most of the numbers in the database are still doubles (though much of the application code still uses floats), and it would be a lot more effort to change all of the floats/doubles to decimals
For our app, none of the fields stored are "exact" decimal quantities. None of them are monetary quantities, and most represent some sort of "natural" measurement (e.g. mass, length, volume, etc.), so a double's 16 significant digits are already way more precise than even our initial measurements.
Many tables have measurements stored in two columns: 1 for the value; 1 for the unit of measure. This can lead to a HUGE difference in scale between the values in a single column. For example, one column can store a value in terms of pCi/g or Ci/m3 (1 Ci = 1000000000000 pCi). Since all the values in a single decimal columns must have the same scale (that is... an allocated number of digits both before and after the decimal point), I'm concerned that we will have overflow and rounding issues.
My teammates argue that:
Doubles are not as accurate nor as precise as decimals due to their inability to exactly represent 1/10 and that they only have 16 significant digits.
Even though we are not tracking money, the app is a inventory system that keeps track of material (mostly gram quantities) and it needs to be "as accurate as possible".
Even after the floats were changed to doubles, we continued to have bad results from calculations that used doubles. Changing these columns (and the application code) to decimals caused these calculations to produce the expected results.
It is my strong belief that the original issues where caused due to floats only having 7 significant digits and that simple arithmetic (e.g. 10001 * 10001) caused them to the data to quickly use up the few significant digits that they had. I do not believe this had anything to do with how binary-floating point numbers can only approximate decimal values, and I believe that using doubles would have fixed this issue.
I believe that the issue with doubles arose because doubles were used along side decimals in calculations that values were be converted back and forth between data types. Many of these calculations would round between intermediary steps in the calculation!
I'm trying to convince my team not to make everything under the sun into a decimal. Most values in the database don't have more than 5 or 6 significant digits anyway. Unfortunately, I am out-ranked by other members of my team that see things rather differently.
So, my question then is...
Am I worrying over nothing? Is there any real harm done by using almost exclusively decimals instead of doubles in an application with nearly 200 database tables, hundreds of transactions, and a rewrite schedule of 5 to 6 years?
Is using decimals actually solving an issue that doubles could not? From my research, both decimals and doubles are susceptible to rounding errors involving arbitrary fractions (adding 1/3 for example) and that the only way to account for this is to consider any value within a certain tolerance as being "equal" when comparing doubles and/or decimals.
If it is more appropriate to use doubles, what arguments could I make (other than what I have already made) could convince my team to not change everything to decimals?
Use decimal when you need perfect accuracy as a base-10 number (financial data, grades)
Use double or float when you are storing naturally imprecise data (measurements, temperature), want much faster mathematical operations, and can sacrifice a minute amount of imprecision.
Since you seem to be only storing various measurements (which have some precision anyways), float would be the logical choice (or double if you need more than 7 digits of precision).
Is using decimals actually solving an issue that doubles could not?
Not really - The data is only going to be as accurate as the measurements used to generate the data. Can you really say that a measured quantity is 123.4567 grams? Does the equipment used to measure it have that level of precision?
To deal with "rounding errors" I would argue that you can't really say whether a measurement of 1234.5 grams is exactly halfway - it could just as easily be 1234.49 grams, which would round down anyways.
What you need to decide is "what level of precision is acceptable" and always round to that precision as a last step. Don't round your data or intermediate calculations.
If it is more appropriate to use doubles, what arguments could I make (other than what I have already made) could convince my team to not change everything to decimals?
Other than the time spent switching, the only thing you're really sacrificing is speed. The only way to know how much speed is to try it both ways and measure the difference.
You'd better try your best not to lose precision. I guess my fault may convince you to choose double.
===> I did some wrong arithmetic, and it returns something very weird:
given 0.60, it returns 5
int get_index(double value) {
if (value < 0 || value > 1.00)
return -1;
return value / 0.10;
}
and I fixed it:
int get_index(double value) {
if (value < 0 || value > 1.00)
return -1;
return (value * 100000000) / (0.10 * 100000000);
}

Objective C Multiplication of floats gives unexpected results

I'm literately just doing a multiplication of two floats. How come these statements produce different results ? Should I even be using floats ?
500,000.00 * 0.001660 = 830
How come these statements produce different results ?
Because floating-point arithmetic is not exact and apparently you were not printing the multiplier precisely enough (i. e. with sufficient number of decimal digits). And it wasn't .00166 but something that seemed 0.00166 rounded.
Should I even be using floats ?
No. For money, use integers and treat them as fixed-point rational numbers. (They still aren't exact, but significantly better and less error-prone.)
You didn't show how you initialized periodicInterest, and presumably you think you set it to 0.00166, but in fact the error in your output is large enough that you must not have explicitly initialized it as periodicInterest = 0.00166. It must be closer to 0.00165975, and the difference between 0.00166 and 0.00165975 is definitely large enough not to just be a single floating-point rounding error.
Assuming you are working with monetary quantities, you should use NSDecimalNumber or NSDecimal.
One non-obvious benefit of using NSDecimalNumber is that it works with NSNumberFormatter, so you can let Apple take care of formatting currencies for all sorts of foreign locales.
UPDATE
In response to the comments:
“periodicInterest is clearly not a monetary quantity” and “decimal is no more free of error when dividing by 12 than binary is” - for inexact quantities, I can think of two concerns:
One concern is using sufficient precision to give accurate results. NSDecimalNumber is a floating-point number with 38 digits of precision and an exponent in the range -128…127. This is more than twice the number of decimal digits an IEEE 'double' can store. The exponent range is less than that of a double, but that's unlikely to matter in financial computing. So NSDecimalNumbers can definitely result in smaller error than floats or doubles, even though none of them can store 1/12 exactly.
The other concern is matching the results computed by some other system, like your bank or your broker or the NYSE. In that case, you need to figure out how that other system is storing numbers and computing with them. If the other system is using a decimal format (which is likely in the financial sector), then NSDecimalNumber will probably be useful.
“Wouldn't it be more efficient to use primitive types to do floating point arithmetic, specially thousands in real time.” Arithmetic on primitive types is far faster than arithmetic on NSDecimalNumbers. I haven't measured it, but a factor of 100 would not surprise me.
You have to strike a balance between your requirements. If decimal accuracy is paramount (as it often is in financial programming), you must sacrifice performance for accuracy. If decimal accuracy is not so important, you can consider carefully using a primitive type, but you should be aware of the accuracy you're sacrificing. Even then, the size of a float is so small (usually only 7 significant decimal digits) that you should probably be using double (at least 15, usually 16 significant decimal digits).
If you need to perform millions of arithmetic operations per second with true decimal accuracy, you might be able to do it using doubles, if you are an IEEE 754 expert capable of analyzing your code to figure out where errors are introduced and how to eliminate them. Few people have this level of expertise. (I don't claim to.) You must also understand how your compiler turns your Objective-C code into machine instructions.
Anyway, perhaps you are just writing a casual app to compute a rough estimate of net present value or future value. In that case, using double would probably suffice, but using NSDecimalNumber would probably also be sufficiently fast. Without knowing more about the app you're writing, I can't give you more specific advice.

Using NSDecimalNumber in objective-c

I have a calculation that goes something like this:
Price = value * randomNumberBetween(decimalValueA, decimalValueB)
I was originally generating this using floats/doubles. However, after looking up a bit more on objective-c, it was mentioned numerous times that when calculating currency you should use NSDecimalNumber.
The issue I have is that I use this 'price' variable in comparisons and things, for example:
if (deposit/price) < 0.2
return price*0.05;
Using NSDecimalNumber makes this a lot more difficult. As far as I'm aware I should be converting any magic numbers (in this case 0.2 and 0.05) to NSDecimalNumber so then I can compare them and use functions such as NSDecimalMultiply.
Also, if I have a function that is something like:
return (minRandomPercentage + ((maxRandomPercentage - minRandomPercentage) * (randomNumber)
it ends up becoming this ridiculous string of nested function calls like:
return [minRandomPercentage decimalNumberByAdding:[[maxRandomPercentage decimalNumberBySubtracting: minRandomPercentage] decimalNumberByMultiplyingBy:random]]
Is this seriously how objective-c deals with decimals? Can anyone give me any clues on how to make this a lot less arduous? I can live with the nested function calls if I could do comparisons with the result and not have to be casting every magic number I have.
If you can't afford to deal with the rounding errors that can occur with the standard base-2 floating point types, you'll have to use NSDecimal or NSDecimalNumber. NSDecimal is a C struct, and Foundation provides a C interface for dealing with it. It provides functions NSDecimalAdd, NSDecimalMultiply, etc.
From the Number and Value Programming Guide: You might consider the C interface if you don’t need to treat decimal numbers as objects—that is, if you don’t need to store them in an object-oriented collection like an instance of NSArray or NSDictionary. You might also consider the C interface if you need maximum efficiency. The C interface is faster and uses less memory than the NSDecimalNumber class.
If you're writing object-oriented code, and you're not interacting with massive data sets, it might be best to stick with NSDecimalNumber. If you profile your code and find that using NSDecimalNumber is causing a high memory overhead, then you may need to consider alternatives.
If rounding errors are not a concern, you can also use native C scalars. See: How to add two NSNumber objects?
NSNumber and NSDecimalNumber are used as object wrappers when you need to pass a number to a method or store numbers in a collection. Since NSArray, NSSet, NSDictionary, etc. only allow you to store objects of type 'id', you can't store ints, floats, etc. natively.
If you're dealing with large data sets and can afford rounding errors, you can use ints, floats, doubles, etc. raw. Then when you have your result and you need to store it or pass it to another object, you can wrap it up in an NSNumber accordingly.
If you do have a need to store large collections of numbers, it's much more efficient to use C arrays than to initialize and store lots of NSNumber objects.
Seriously, this is how you do base 10 arithmetic in iOS. As you're probably aware, many numbers that have exact representations in base 10 don't have exact representations in base 2, and that can lead to unacceptable rounding when working with base 10 systems like currency or metric measurements.
Values represented by NSDecimalNumber are objects, unlike built-in numeric types like int, float, and double. It seems odd at first to use methods for arithmetic operations, but it makes more sense when you start thinking about the values as objects.

Objective C Math Formula Fail

noob here wants to calculate compound interest on iPhone.
float principal;
float rate;
int compoundPerYear;
int years;
float amount;
formula should be: amount = principal*(1+rate/compoundPerYear)^(rate*years)
I get slightly incorrect answer with:
amount = principal*pow((1+(rate/compoundPerYear)), (compoundPerYear*years));
I'm testing it with rate of .1, but debugger reports .100000001 .
Am I doing it wrong? Should I use doubles or special class (e.g., NSNumber)?
Thanks for any other ideas!
After further research it seems that the NSDecimalNumber class may be just what I need. Now I just have to figure out how to use this bad boy.
double will get you closer, but you can't represent 1/10 exactly in binary (using IEEE floating point notation, anyway).
If you're really interested, you can look at What Every Computer Scientist Should Know About Floating-Point Arithmetic. Link shamefully stolen from another SO thread.
The quick and dirty explanation is that floating point is stored in binary with bits that represents fractional powers of 2 (1/2, 1/4, 1/8, ...). There is simply no mathematical way to add up these fractions to exactly 1/10, thus 0.1 is not able to be exactly represented in IEEE floating point notation.
double extends the accuracy of the number by giving you more numerals before/after the radix, but it does not change the format of the binary in a way that can compensate for this. You'll just get the extra bit somewhere later down the line, most likely.
See also:
Why can’t decimal numbers be represented exactly in binary?
What’s wrong with using == to compare floats in Java?
and other similar threads.
Further expansion that I mulled over on the drive home from work: one way you could conceivably handle this is by just representing all of the monetary values in cents (as an int), then converting to a dollars.cents format when displaying the data. This is actually pretty easy, too, since you can take advantage of integer division's truncating when you convert:
int interest, dollars, cents;
interest = 16034; //$160.34, in cents
dollars = value / 100; //The 34 gets truncated: dollars == 160
cents = value % 100; //cents == 34
printf("Interest earned to date: $%d.%d\n", dollars, cents);
I don't know Objective-C, but hopefully this C example makes sense, too. Again, this is just one way to handle it. It would also be improved by having a function that does the string formatting whenever you need to show the data.
You can obviously come up with your own (even better!) way to do it, but maybe this will help get you started. If anyone else has suggestions on this one, I'd like to hear them, too!
Short answer: Never use floating point numbers for money.
The easy way that works across most platforms is to represent money as integer amounts of its smallest unit. The smallest unit is often something like a cent, although often 1/10 or 1/100 of a cent are the real base units.
On many platforms, there are also number types available that can represent fixed-point decimals.
Be sure to get the rounding right. Financial bookkeeping often uses banker's rounding.