SQL Query Slow? Should it be? - sql

Using SQLite, Got a table with ~10 columns. Theres ~25million rows.
That table has an INDEX on 'sid, uid, area, type'.
I run a select like so:
SELECT sid from actions where uid=1234 and area=1 and type=2
That returns me 1571 results, and takes 4 minutes to complete.
Is that sane?
I'm far from an SQL expert, so hopefully someone can fill me in on what I'm missing. Why could this possibly take 4+ minutes with everything indexed?
Any recommended resources to learn about achieving high SQL performance? I feel like a lot of the Google results just give me opinions or anecdotes, I wouldn't mind a solid book.

Create uid+area+type index instead, or uid+area+type+sid

Since the index starts with the sid column, it must do a scan (start at the beginning, read to the end) of either the index or the table to find your data matching the other 3 columns. This means it has to read all 25 million rows to find the answer. Even if it's reading just the rows of the index rather than the table, that's a lot of work.
Imagine a phone book of the greater New York metropolitan area, organized by (with an 'index' on) Last Name, First Name.
You submit SELECT [Last Name] FROM NewYorkPhoneBook WHERE [First Name] = 'Thelma'
It has to read all 25 million entries to find all those Thelmas. Unless you either specify the last name and can then turn directly to the page where that last name first appers (a seek), or have an index organized by First Name (a seek on the index followed by a seek on the table, aka a "bookmark lookup"), there's no way around it.
The index you would create to make your query faster is on uid, area, type. You could include sid, though leave it out if sid is part of the primary key.
Note: Tables often do have multiple indexes. Just note that the more indexes, the slower the write performance. Unnecessary indexes can slow overall performance, sometimes radically so. Testing and eventually experience will help guide you in this. Also, reasoning it out as a real-world problem (like my phone book examples) can really help. If it wouldn't make sense with phone books (and separate phone book indexes) then it probably won't make sense in the database.
One more thing: even if you put an index on those columns, if your query is going to end up pulling a great percentage of the rows in the main table, it will still be cheaper to scan the table rather than do the bookmark lookup (seek the index then seek the table for each row found). The exact "tipping point" of whether to do a bookmark lookup with a seek, or to do a table scan isn't something I can tell you off the top of my head, but it is based on solid math.

The index is not really usefull as it does start with the wrong field... which means a table scan.
Looks like you have a normal computer there, not something made for databases. I run table scans over 650 million rows in about a minute on my lower end db server, but that means reading about a gigabyte per second from the discs, which are a RAID of 10k RM discs - RAID 10. Just to say that basically... that databases love IO, and that in a degree that you have never seen before. Basically larger db servers have many discs to satisfy the IOPS (IO per second) requirement. I have seen a server with 190 discs.
So, you ahve two choices: beed up your IOPS capability (means spending money), or set up indices that get used because they are "proper".
Proper means: an index only is usefull if the fields it contains are used from left to right. Not necessarily in the same order... but if a field is missed there is a chance the SQL System decides it is not worth pursuing the index and instead goes table scan (as in your case).

When you create your new index on uid, area and type, you should also do a select distinct on each one to determine which has the fewest distinct entries, then create your index such that the fewer the differences the earlier they show up in the index definition.

Related

Index versus Sequential search performance?

Say I have a database that holds information about books and their dates of publishing. (two attributes, bookName and publicationDate).
Say that the attribute publicationDate has a Hash Index.
If I wanted to display every book that was published in 2010 I would enter this query : select bookName from Books where publicationDate=2010.
In my lecture, it is explained that if there is a big volume of data and that the publication dates are very diverse, the more optimized way is to use the Hash index in order to keep only the books published in 2010.
However, if the vast majority of the books that are in the database were published in 2010 it is better to search the database sequentially in terms of performance.
I really don't understand why? What are the situations where using an index is more optimized and why?
It is surprising that you are learning about hash indexes without understanding this concept. Hash indexing is a pretty advanced database concept; most databases don't even support them.
Although the example is quite misleading. 2010 is not a DATE; it is a YEAR. This is important because a hash index only works on equality comparisons. So the natural way to get a year of data from dates:
where publicationDate >= date '2010-01-01' and
publicationDate < date '2011-01-01'
could not use a hash index because the comparisons are not equality comparisons.
Indexes can be used for several purposes:
To quickly determine which rows match filtering conditions so fewer data pages need to be read.
To identify rows with common key values for aggregations.
To match rows between tables for joins.
To support unique constraints (via unique indexes).
And for b-tree indexes, to support order by.
This is the first purpose, which is to reduce the number of data pages being read. Reading a data page is non-trivial work, because it needs to be fetched from disk. A sequential scan reads all data pages, regardless of whether or not they are needed.
If only one row matches the index conditions, then only one page needs to be read. That is a big win on performance. However, if every page has a row that matches the condition, then you are reading all the pages anyway. The index seems less useful.
And using an index is not free. The index itself needs to be loaded into memory. The keys need to be hashed and processed during the lookup operation. All of this overhead is unnecessary if you just scan the pages (although there is other overhead for the key comparisons for filtering).
Using an index has a performance cost. If the percentage of matches is a small fraction of the whole table, this cost is more than made up for by not having to scan the whole table. But if there's a large percentage of matches, it's faster to simply read the table.
There is the cost of reading the index. A small, frequently used index might be in memory, but a large or infrequently used one might be on disk. That means slow disk access to search the index and get the matching row numbers. If the query matches a small number of rows this overhead is a win over searching the whole table. If the query matches a large number of rows, this overhead is a waste; you're going to have to read the whole table anyway.
Then there is an IO cost. With disks it's much, much faster to read and write sequentially than randomly. We're talking 10 to 100 times faster.
A spinning disk has a physical part, the head, it must move around to read different parts of the disk. The time it takes to move is known as "seek time". When you skip around between rows in a table, possibly out of order, this is random access and induces seek time. In contrast, reading the whole table is likely to be one long continuous read; the head does not have to jump around, there is no seek time.
SSDs are much, much faster, there's no physical parts to move, but they're still much faster for sequential access than random.
In addition, random access has more overhead between the operating system and the disk; it requires more instructions.
So if the database decides a query is going to match most of the rows of a table, it can decide that it's faster to read them sequentially and weed out the non-matches, than to look up rows via the index and using slower random access.
Consider a bank of post office boxes, each numbered in a big grid. It's pretty fast to look up each box by number, but it's much faster to start at a box and open them in sequence. And we have an index of who owns which box and where they live.
You need to get the mail for South Northport. You look up in the index which boxes belong to someone from South Northport, see there's only a few of them, and grab the mail individually. That's an indexed query and random access. It's fast because there's only a few mailboxes to check.
Now I ask you to get the mail for everyone but South Northport. You could use the index in reverse: get the list of boxes for South Northport, subtract those from the list of every box, and then individually get the mail for each box. But this would be slow, random access. Instead, since you're going to have to open nearly every box anyway, it is faster to check every box in sequence and see if it's mail for South Northport.
More formally, the indexed vs table scan performance is something like this.
# Indexed query
C[index] + (C[random] * M)
# Full table scan
(C[sequential] + C[match]) * N
Where C are various constant costs (or near enough constant), M is the number of matching rows, and N is the number of rows in the table.
We know C[sequential] is 10 to 100 times faster than C[random]. Because disk access is so much slower than CPU or memory operations, C[match] (the cost of checking if a row matches) will be relatively small compared to C[sequential]. More formally...
C[random] >> C[sequential] >> C[match]
Using that we can assume that C[sequential] + C[match] is C[sequential].
# Indexed query
C[index] + (C[random] * M)
# Full table scan
C[sequential] * N
When M << N the indexed query wins. As M approaches N, the full table scan wins.
Note that the cost of using the index isn't really constant. C[index] is things like loading the index, looking up a key, and reading the row IDs. This can be quite variable depending on the size of the index, type of index, and whether it is on disk (cold) or in memory (hot). This is why the first few queries are often rather slow when you've first started a database server.
In the real world it's more complicated than that. In reality rows are broken up into data pages and databases have many tricks to optimize queries and disk access. But, generally, if you're matching most of the rows a full table scan will beat an indexed lookup.
Hash indexes are of limited use these days. It is a simple key/value pair and can only be used for equality checks. Most databases use a B-Tree as their standard index. They're a little more costly, but can handle a broader range of operations including equality, ranges, comparisons, and prefix searches such as like 'foo%'.
The Postgres Index Types documentation is pretty good high level run-down of the various advantages and disadvantages of types of indexes.

Make query run faster - IT HAS NO JOIN

I got a really huge amount of data that are used to be joined anywhere just to get it (because it was really slow the team decided to gather it all into one table), but now even though they're literally right in one table (no join needed).
It's still so slow. Taking a one day range filter event will lead to time out (took more than 10s, yes that's how bad it is).
What should I suggest to my DBA?
What is the "selectivity"? That is, how many rows does your select expect to retrieve? 100% of the rows? 1% of the rows? 0.01% of the rows?
1. Low selectivity
If the selectivity is low (i.e less than 5%, ideally less than 0.5%) then good indexing is the best practice.
If so, which columns in the where clause (filtering columns) have the best (lowest) selectivity? Add these columns first in the index.
Once you have decided on the best index, you can make the table a "clustered index" table using that index. That way the heap will be presorted (fast lookup) by the index columns, for improved io since the disk blocks will be looked up sequentially.
2. High selectivity
If the selectivity is high (20% or more), there's no much you can do on your side (development). You could still get some improvement by:
Removing unneeded columns.
Make sure the select uses a FULL TABLE SCAN.
Ask the DBA to assign more resources (SGA, disk priority, paralellism, etc.)
3. Otherwise
The amount of data you have vastly exceeds the database resources you have. There's nothing you can do about it, except to tell the client about this reality, and:
Find together a way of defining smaller queries that can be achievable.
4. Finally
If you don't understanf the terms of selectivity, full table scan, indexing, database resources, heap, disk blocks, I would recommend you study them. I'm fairly sure you need to fully understand them right now!
As others have said, you need an index. However if it's really huge you can partition the data.
This allows you to drop sections of the data without using time consuming deletes. For example if you're working with some sort of historical data and want to keep 3 months worth, you can partition by month, then each month drop the oldest partition.
However on a more general note, it's rarely a good idea to take a slow multi-table query and glom it all together to improve performance. What you really need is to figure out what's wrong with the slow query and fix it.
This is a job for your DBA.

Index not used Postgres

Tracking indexes and analyzing the tables on which index add, we encounter some situations:
some of our tables have index, but when I execute a query with a clause where on index field, doesn't account in your idx_scan field respective. Same relname and schemaname, so, I couldn't be wrong.
Testing more, I deleted and create the table again, after that the query returned to account the idx_scan.
That occurred with another tables too, we executed some queries with indexes and didn't account idx_scan field, only in seq_scan and even if I create another field in the same table with index, this new field doesn't count idx_scan.
Whats the problem with these tables? What do we do wrong? Only if I create a new table with indexes that account in idx_scan, just in an old table that has wrong.
We did migration sometimes with this database, maybe it can be the problem? Happened on localhost and server online.
Another event that we saw, some indexes were accounted, idx_scan > 0, and when execute query select, does not increase idx_scan again, the number was fixed and just increase seq_scan.
I believe those problems can be related.
I appreciate some help, it's a big mystery prowling our DB and have no idea what the problem can be.
A couple suggestions (and what to add to your question).
The first is that index scans are not always favored to to sequential scans. For example, if your table is small or the planner estimates that most pages will need to be fetched, an index scan will be omitted in favor of a sequential scan.
Remember: no plan beats retrieving a single page off disk and sequentially running through it.
Similarly if you have to retrieve, say, 50% of the pages of a relation, doing an index scan is going to trade somewhat less disk/IO total for a great deal more random disk/IO. It might be a win if you use SSD's but certainly not with conventional hard drives. After all you don't really want to be waiting for platters to turn. If you are using SSD's you can tweak planner settings accordingly.
So index vs sequential scan is not the end of the story. The question is how many rows are retrieved, how big the tables are, what percentage of disk pages are retrieved, etc.
If it really is picking a bad plan (rather than a good plan that you didn't consider!) then the question becomes why. There are ways of setting statistics targets but these may not be really helpful.
Finally the planner really can't choose an index in some cases where you might like it to. For example, suppose I have a 10 million row table with records spanning 5 years (approx 2 million rows per year on average). I would like to get the distinct years. I can't do this with a standard query and index, but I can build a WITH RECURSIVE CTE to essentially execute the same query once for each year and that will use an index. Of course you had better have an index in that case or WITH RECURSIVE will do a sequential scan for each year which is certainly not what you want!
tl;dr: It's complicated. You want to make sure this is really a bad plan before jumping to conclusions and then if it is a bad plan see what you can do about it depending on your configuration.

Continuation - Viewing FIRST_ROWS before query completes

I have identified the query constructs my users normally use. Would it make sense for me to create composite indexes to support those constructs and provide FIRST_ROWS capability?
If I migrate from SE to IDS, I will lose the ability to write low-level functions with C-ISAM calls, but gain FIRST_ROWS along with other goodies like: SET-READS for index scans (onconfig USE_[KO]BATCHEDREAD), optimizer directives, parallel queries, etc.
Information from Comments
Pawnshop production tables are queried by: customer.name char(30) using wildcards (LASSURF* to find LASTNAME SURNAME, FIRSTNAME) or queried by pawns.ticket_number INT. Customer and pawns are joined by: customer.name = pawns.name, not customer.serial = pawns.fk. Pawns with trx date older than 1 year are moved to historical table (>500K nrows) in a different database, on another hard disk. Index on historical is by trx_date descending. This is where the ad-hoc composite query constructs come into play.
Once a customer's pawn transaction is found, the row is updated when an intrest or redeem pymt is made by the customer. If customers don't make a pymt in 90 days, users will mananually update which pawns they will forfeit. pawns.status changes to inactive when a customer redeems a pawn or forfeits it for lack of pymt. inactives are moved out of pawns table into historical table when their trx dates are older than 1 year, so no mass-updating occurs in this app. Pawnshops run this proc every morning before opening business.
{ISQL 2.10.06E (SE-DOS16M protected mode) pawns table optimization -
once-daily, before start of business, procedure}
unload to "U:\UNL\ACTIVES.UNL"
select * from pawns where pawns.status = "A"
order by pawns.cust_name, pawns.trx_date;
unload to "U:\UNL\INACTIVE.UNL"
select * from pawns
where pawns.status <> "A"
and pawns.trx_date >= (today - 365)
order by pawns.cust_name, pawns.trx_date desc;
unload to "U:\UNL\HISTORIC.UNL"
select * from pawns
where pawns.status <> "A"
and pawns.trx_date < (today - 365)
order by pawns.trx_date desc;
drop table pawns;
create table pawns
(
trx_num serial,
cust_name char(30),
status char(1),
trx_date date,
. . . ) in "S:\PAWNSHOP.DBS\PAWNS";
load from "U:\UNL\ACTIVES.UNL" insert into pawns; {500:600 nrows avg.}
load from "U:\UNL\INACTIVE.UNL" insert into pawns; {6500:7000 nrows avg.}
load from "U:\UNL\HISTORIC.UNL" insert into dss:historic; {>500K nrows}
create cluster index pa_cust_idx on pawns (cust_name);
{this groups each customers pawns together, actives in
oldest trx_date order first, then inactive pawns within the last year in most
recent trx_date order. inactives older than 1 year are loaded into historic
table in a separate database, on a separate hard disk. historic table
optimization is done on a weekly basis for DSS queries.}
create unique index pa_trx_num_idx on pawns (trx_num);
create index pa_trx_date_idx on pawns (trx_date);
create index pa_status_idx on pawns (status);
{grant statements...}
update statistics;
There isn't a simple yes/no answer - it is a balancing act, as with so many performance issues.
There are two main costs associated with indexes which must be balanced against the benefits.
Indexes must be maintained as rows are added, deleted, modified in the table. The cost is not huge, but neither is it negligible.
Indexes occupy disk space.
There is also a small overhead when queries are optimized simply because there are more indexes to consider.
The primary benefit of good indexes is vastly improved performance on selecting data when the index can be used to good effect.
If your tables are not very volatile and are frequently searched with criteria where the indexes can help, then it probably makes sense to create the composite indexes, assuming that disk space is not an issue.
If your tables are very volatile, or if a specific index will seldom be used (but is beneficial on those few occasions when it is used), then you should perhaps weigh the almost one-off cost of a slower query against the cost of storing and maintaining the index for those few occasions when it can be used.
There is a quite good book on the subject of index design: Relational Database Index Design and the Optimizers by Lahdenmäki and Leach (it is also fairly expensive).
In the latest comment, Frank says:
[L]ooking for a couple of things. As its already been said, the simplest thing to do is to allow Informix to start returning rows once it has them. (Oracle does this by default.) The larger picture to what Frank is asking for is something similar to what Google has. Ok it really goes back to Alta Vista and the 90's when talking about search indexes on the web. The idea is that you can do a quick search, pick up the first n things while reporting a "number" of rows returned in the search. (As if the number reported by Google is accurate.)
This additional comment from Frank makes more sense in the context of the question for which this is a continuation.
Obviously, unless the SQL statement forces Informix to do a sort, it makes results available as soon as it has them; it always has. The FIRST_ROWS optimization hint indicates to IDS that if it has a choice of two query plans and one will let it produce the first rows more quickly than the other, then it should prefer the one that produces the first rows quickly, even if it is more expensive overall than the alternative. Even in the absence of the hint, IDS still tries to make the data available as quickly as possible - it just also tries to do it as efficiently as possible too.
When the query is prepared, you get an estimate of how many rows may be returned - you could use that as an indicator (a few, quite a lot, very many). Separately, you can quickly and independently discover the number of rows in the main table you are searching. Given this metadata, you can certainly use a technique with a scroll cursor to give you a backing store in the database that contains the primary key values of the rows you are interested in. At any time, you can load an array with the display data for a set of interesting rows for display to the user. On user request, you can arrange to display another page full of information. At some point in the proceedings, you will find that you've reached the end of the data in the scroll cursor. Clearly, if you do FETCH LAST, you force that to happen. If you just do a few more FETCH NEXTs, then you will eventually get a NOTFOUND condition.
All of this has been possible with Informix (IDS and its prior incarnations, OnLine, Turbo, SE, plus I4GL) since the late 80s. The FIRST_ROWS optimization is more recent; it is still just a hint to the optimizer, and usually makes little difference to what the optimizer does.

SQL: Inner joining two massive tables

I have two massive tables with about 100 million records each and I'm afraid I needed to perform an Inner Join between the two. Now, both tables are very simple; here's the description:
BioEntity table:
BioEntityId (int)
Name (nvarchar 4000, although this is an overkill)
TypeId (int)
EGM table (an auxiliar table, in fact, resulting of bulk import operations):
EMGId (int)
PId (int)
Name (nvarchar 4000, although this is an overkill)
TypeId (int)
LastModified (date)
I need to get a matching Name in order to associate BioEntityId with the PId residing in the EGM table. Originally, I tried to do everything with a single inner join but the query appeared to be taking way too long and the logfile of the database (in simple recovery mode) managed to chew up all the available disk space (that's just over 200 GB, when the database occupies 18GB) and the query would fail after waiting for two days, If I'm not mistaken. I managed to keep the log from growing (only 33 MB now) but the query has been running non-stop for 6 days now and it doesn't look like it's gonna stop anytime soon.
I'm running it on a fairly decent computer (4GB RAM, Core 2 Duo (E8400) 3GHz, Windows Server 2008, SQL Server 2008) and I've noticed that the computer jams occasionally every 30 seconds (give or take) for a couple of seconds. This makes it quite hard to use it for anything else, which is really getting on my nerves.
Now, here's the query:
SELECT EGM.Name, BioEntity.BioEntityId INTO AUX
FROM EGM INNER JOIN BioEntity
ON EGM.name LIKE BioEntity.Name AND EGM.TypeId = BioEntity.TypeId
I had manually setup some indexes; both EGM and BioEntity had a non-clustered covering index containing TypeId and Name. However, the query ran for five days and it did not end either, so I tried running Database Tuning Advisor to get the thing to work. It suggested deleting my older indexes and creating statistics and two clustered indexes instead (one on each table, just containing the TypeId which I find rather odd - or just plain dumb - but I gave it a go anyway).
It has been running for 6 days now and I'm still not sure what to do...
Any ideas guys? How can I make this faster (or, at least, finite)?
Update:
- Ok, I've canceled the query and rebooted the server to get the OS up and running again
- I'm rerunning the workflow with your proposed changes, specifically cropping the nvarchar field to a much smaller size and swapping "like" for "=". This is gonna take at least two hours, so I'll be posting further updates later on
Update 2 (1PM GMT time, 18/11/09):
- The estimated execution plan reveals a 67% cost regarding table scans followed by a 33% hash match. Next comes 0% parallelism (isn't this strange? This is the first time I'm using the estimated execution plan but this particular fact just lifted my eyebrow), 0% hash match, more 0% parallelism, 0% top, 0% table insert and finally another 0% select into. Seems the indexes are crap, as expected, so I'll be making manual indexes and discard the crappy suggested ones.
I'm not an SQL tuning expert, but joining hundreds of millions of rows on a VARCHAR field doesn't sound like a good idea in any database system I know.
You could try adding an integer column to each table and computing a hash on the NAME field that should get the possible matches to a reasonable number before the engine has to look at the actual VARCHAR data.
For huge joins, sometimes explicitly choosing a loop join speeds things up:
SELECT EGM.Name, BioEntity.BioEntityId INTO AUX
FROM EGM
INNER LOOP JOIN BioEntity
ON EGM.name LIKE BioEntity.Name AND EGM.TypeId = BioEntity.TypeId
As always, posting your estimated execution plan could help us provide better answers.
EDIT: If both inputs are sorted (they should be, with the covering index), you can try a MERGE JOIN:
SELECT EGM.Name, BioEntity.BioEntityId INTO AUX
FROM EGM
INNER JOIN BioEntity
ON EGM.name LIKE BioEntity.Name AND EGM.TypeId = BioEntity.TypeId
OPTION (MERGE JOIN)
First, 100M-row joins are not at all unreasonable or uncommon.
However, I suspect the cause of the poor performance you're seeing may be related to the INTO clause. With that, you are not only doing a join, you are also writing the results to a new table. Your observation about the log file growing so huge is basically confirmation of this.
One thing to try: remove the INTO and see how it performs. If the performance is reasonable, then to address the slow write you should make sure that your DB log file is on a separate physical volume from the data. If it isn't, the disk heads will thrash (lots of seeks) as they read the data and write the log, and your perf will collapse (possibly to as little as 1/40th to 1/60th of what it could be otherwise).
Maybe a bit offtopic, but:
" I've noticed that the computer jams occasionally every 30 seconds (give or take) for a couple of seconds."
This behavior is characteristic for cheap RAID5 array (or maybe for single disk) while copying (and your query mostly copies data) gigabytes of information.
More about problem - can't you partition your query into smaller blocks? Like names starting with A, B etc or IDs in specific ranges? This could substantially decrease transactional/locking overhead.
I'd try maybe removing the 'LIKE' operator; as you don't seem to be doing any wildcard matching.
As recommended, I would hash the name to make the join more reasonable. I would strongly consider investigating assigning the id during the import of batches through a lookup if it is possible, since this would eliminate the need to do the join later (and potentially repeatedly having to perform such an inefficient join).
I see you have this index on the TypeID - this would help immensely if this is at all selective. In addition, add the column with the hash of the name to the same index:
SELECT EGM.Name
,BioEntity.BioEntityId
INTO AUX
FROM EGM
INNER JOIN BioEntity
ON EGM.TypeId = BioEntity.TypeId -- Hopefully a good index
AND EGM.NameHash = BioEntity.NameHash -- Should be a very selective index now
AND EGM.name LIKE BioEntity.Name
Another suggestion I might offer is try to get a subset of the data instead of processing all 100 M rows at once to tune your query. This way you don't have to spend so much time waiting to see when your query is going to finish. Then you could consider inspecting the query execution plan which may also provide some insight to the problem at hand.
100 million records is HUGE. I'd say to work with a database that large you'd require a dedicated test server. Using the same machine to do other work while performing queries like that is not practical.
Your hardware is fairly capable, but for joins that big to perform decently you'd need even more power. A quad-core system with 8GB would be a good start. Beyond that you have to make sure your indexes are setup just right.
do you have any primary keys or indexes? can you select it in stages? i.e. where name like 'A%', where name like 'B%', etc.
I had manually setup some indexes; both EGM and BioEntity had a non-clustered covering index containing TypeId and Name. However, the query ran for five days and it did not end either, so I tried running Database Tuning Advisor to get the thing to work. It suggested deleting my older indexes and creating statistics and two clustered indexes instead (one on each table, just containing the TypeId which I find rather odd - or just plain dumb - but I gave it a go anyway).
You said you made a clustered index on TypeId in both tables, although it appears you have a primary key on each table already (BioEntityId & EGMId, respectively). You do not want your TypeId to be the clustered index on those tables. You want the BioEntityId & EGMId to be clustered (that will physically sort your data in order of the clustered index on disk. You want non-clustered indexes on foreign keys you will be using for lookups. I.e. TypeId. Try making the primary keys clustered, and adding a non-clustered index on both tables that ONLY CONTAINS TypeId.
In our environment we have a tables that are roughly 10-20 million records apiece. We do a lot of queries similar to yours, where we are combining two datasets on one or two columns. Adding an index for each foreign key should help out a lot with your performance.
Please keep in mind that with 100 million records, those indexes are going to require a lot of disk space. However, it seems like performance is key here, so it should be worth it.
K. Scott has a pretty good article here which explains some issues more in depth.
Reiterating a few prior posts here (which I'll vote up)...
How selective is TypeId? If you only have 5, 10, or even 100 distinct values across your 100M+ rows, the index does nothing for you -- particularly since you're selecting all the rows anyway.
I'd suggest creating a column on CHECKSUM(Name) in both tables seems good. Perhaps make this a persisted computed column:
CREATE TABLE BioEntity
(
BioEntityId int
,Name nvarchar(4000)
,TypeId int
,NameLookup AS checksum(Name) persisted
)
and then create an index like so (I'd use clustered, but even nonclustered would help):
CREATE clustered INDEX IX_BioEntity__Lookup on BioEntity (NameLookup, TypeId)
(Check BOL, there are rules and limitations on building indexes on computed columns that may apply to your environment.)
Done on both tables, this should provide a very selective index to support your query if it's revised like this:
SELECT EGM.Name, BioEntity.BioEntityId INTO AUX
FROM EGM INNER JOIN BioEntity
ON EGM.NameLookup = BioEntity.NameLookup
and EGM.name = BioEntity.Name
and EGM.TypeId = BioEntity.TypeId
Depending on many factors it will still run long (not least because you're copying how much data into a new table?) but this should take less than days.
Why an nvarchar? Best practice is, if you don't NEED (or expect to need) the unicode support, just use varchar. If you think the longest name is under 200 characters, I'd make that column a varchar(255). I can see scenarios where the hashing that has been recommended to you would be costly (it seems like this database is insert intensive). With that much size, however, and the frequency and random nature of the names, your indexes will become fragmented quickly in most scenarios where you index on a hash (dependent on the hash) or the name.
I would alter the name column as described above and make the clustered index TypeId, EGMId/BioentityId (the surrogate key for either table). Then you can join nicely on TypeId, and the "rough" join on Name will have less to loop through. To see how long this query might run, try it for a very small subset of your TypeIds, and that should give you an estimate of the run time (although it might ignore factors like cache size, memory size, hard disk transfer rates).
Edit: if this is an ongoing process, you should enforce the foreign key constraint between your two tables for future imports/dumps. If it's not ongoing, the hashing is probably your best best.
I would try to solve the issue outside the box, maybe there is some other algorithm that could do the job much better and faster than the database. Of course it all depends on the nature of the data but there are some string search algorithm that are pretty fast (Boyer-Moore, ZBox etc), or other datamining algorithm (MapReduce ?) By carefully crafting the data export it could be possible to bend the problem to fit a more elegant and faster solution. Also, it could be possible to better parallelize the problem and with a simple client make use of the idle cycles of the systems around you, there are framework that can help with this.
the output of this could be a list of refid tuples that you could use to fetch the complete data from the database much faster.
This does not prevent you from experimenting with index, but if you have to wait 6 days for the results I think that justifies resources spent exploring other possible options.
my 2 cent
Since you're not asking the DB to do any fancy relational operations, you could easily script this. Instead of killing the DB with a massive yet simple query, try exporting the two tables (can you get offline copies from the backups?).
Once you have the tables exported, write a script to perform this simple join for you. It'll take about the same amount of time to execute, but won't kill the DB.
Due to the size of the data and length of time the query takes to run, you won't be doing this very often, so an offline batch process makes sense.
For the script, you'll want to index the larger dataset, then iterate through the smaller dataset and do lookups into the large dataset index. It'll be O(n*m) to run.
If the hash match consumes too many resources, then do your query in batches of, say, 10000 rows at a time, "walking" the TypeID column. You didn't say the selectivity of TypeID, but presumably it is selective enough to be able to do batches this small and completely cover one or more TypeIDs at a time. You're also looking for loop joins in your batches, so if you still get hash joins then either force loop joins or reduce the batch size.
Using batches will also, in simple recovery mode, keep your tran log from growing very large. Even in simple recovery mode, a huge join like you are doing will consume loads of space because it has to keep the entire transaction open, whereas when doing batches it can reuse the log file for each batch, limiting its size to the largest needed for one batch operation.
If you truly need to join on Name, then you might consider some helper tables that convert names into IDs, basically repairing the denormalized design temporarily (if you can't repair it permanently).
The idea about checksum can be good, too, but I haven't played with that very much, myself.
In any case, such a huge hash match is not going to perform as well as batched loop joins. If you could get a merge join it would be awesome...
I wonder, whether the execution time is taken by the join or by the data transfer.
Assumed, the average data size in your Name column is 150 chars, you will actually have 300 bytes plus the other columns per record. Multiply this by 100 million records and you get about 30GB of data to transfer to your client. Do you run the client remote or on the server itself ?
Maybe you wait for 30GB of data being transferred to your client...
EDIT: Ok, i see you are inserting into Aux table. What is the setting of the recovery model of the database?
To investigate the bottleneck on the hardware side, it might be interesting whether the limiting resource is reading data or writing data. You can start a run of the windows performance monitor and capture the length of the queues for reading and writing of your disks for example.
Ideal, you should place the db log file, the input tables and the output table on separate physical volumes to increase speed.