Hello I have a bizarre problem with sprintf. Here's my code:
void draw_number(int number,int height,int xpos,int ypos){
char string_buffer[5]; //5000 is the maximum score, hence 4 characters plus null character equals 5
printf("Number - %i\n",number);
sprintf(string_buffer,"%i",number); //Get string
printf("String - %s\n",string_buffer);
int y_down = ypos + height;
for (int x = 0; x < 5; x++) {
char character = string_buffer[x];
if(character == NULL){ //Blank characters occur at the end of the number from spintf. Testing with NULL works
break;
}
int x_left = xpos+height*x;
int x_right = x_left+height;
GLfloat vertices[] = {x_left,ypos,x_right,ypos,x_left,y_down,x_right,y_down};
rectangle2d(vertices, number_textures[atoi(strcat(&character,"\0"))], full_texture_texcoords);
}
}
With the printf calls there, the numbers are printed successfully and the numbers are drawn as expected. When I take them away, I can't view the output and compare it, of-course, but the numbers aren't rendering correctly. I assume sprintf breaks somehow.
This also happens with NSLog. Adding NSLog's anywhere in the program can either break or fix the function.
What on earth is going on?
This is using Objective-C with the iOS 4 SDK.
Thank you for any answer.
Well this bit of code is definately odd
char character = string_buffer[x];
...
... strcat(&character,"\0") ...
Originally I was thinking that depending on when there happens to be a NUL terminator on the stack this will clober some peice of memory, and could be causing your problems. However, since you're appending the empty string I don't think it will have any effect.
Perhaps the contents of the stack actually contain numbers that atoi is interpretting?Either way I suggest you fix that and see if it solves your issue.
As to how to fix it Georg Fritzsche beat me to it.
With strcat(&character,"\0") you are trying to use a single character as a character array. This will probably result in atoi() returning completely different values from what you're expecting (as you have no null-termination) or simply crash.
To fix the original approach, you could use proper a zero-terminated string:
char number[] = { string_buffer[x], '\0' };
// ...
... number_textures[atoi(number)] ...
But even easier would be to simply use the following:
... number_textures[character - '0'] ...
Don't use NULL to compare against a character, use '\0' since it's a character you're looking for. Also, your code comment sounds surprised, of course a '\0' will occur at the end of the string, that is how C terminates strings.
If your number is ever larger than 9999, you will have a buffer overflow which can cause unpredicable effects.
When you have that kind of problem, instantly think stack or heap corruption. You should dynamically allocate your buffer with enough size- having it as a fixed size is BEGGING for this kind of trouble. Because you don't check that the number is within the max- if you ever had another bug that caused it to be above the max, you'd get this problem here.
Related
This code doesn't repeat if I answer a negative number like "-1.01". How can I make it loop so that it will ask again for c?
#include <stdio.h>
main()
{
float c;
do {
printf("O hai! How much change is owed? ");
scanf("%.2f", &c);
} while (c < 0.0);
return(0);
}
The format strings for scanf are subtly different than those for printf. You are only allowed to have (as per C11 7.21.6.2 The fscanf function /3):
an optional assignment-suppressing character *.
an optional decimal integer greater than zero that specifies the maximum field width (in characters).
an optional length modifier that specifies the size of the receiving object.
a conversion specifier character that specifies the type of conversion to be applied.
Hence your format specifier becomes illegal the instant it finds the . character, which is not one of the valid options. As per /13 of that C11 section listed above:
If a conversion specification is invalid, the behaviour is undefined.
For input, you're better off using the most basic format strings so that the format is not too restrictive. A good rule of thumb in I/O is:
Be liberal in what you accept, specific in what you generate.
So, the code is better written as follows, including what a lot of people ignore, the possibility that the scanf itself may fail, resulting in an infinite loop:
#include <stdio.h>
int main (void) {
float c;
do {
printf ("O hai! How much change is owed? ");
if (scanf ("%f", &c) != 1) {
puts ("Error getting a float.");
break;
}
} while (c < 0.0f);
return 0;
}
If you're after a more general purpose input solution, where you want to allow the user to input anything, take care of buffer overflow, handle prompting and so on, every C developer eventually comes up with the idea that the standard ways of getting input all have deficiencies. So they generally go write their own so as to get more control.
For example, here's one that provides all that functionality and more.
Once you have the user's input as a string, you can examine and play with it as much as you like, including doing anything you would have done with scanf, by using sscanf instead (and being able to go back and do it again and again if initial passes over the data are unsuccessful).
scanf("%.2f", &c );
// ^^ <- This seems unnecessary here.
Please stick with the basics.
scanf("%f", &c);
If you want to limit your input to 2 digits,
scanf("%2f", &c);
Okay, so apparently this works:
void foo(size_t s) {
int myArray[s];
// ... use myArray...
}
Is this really legal? I mean, it must be, because it compiles (where the C compiler would reject it as non-constant). The first part of my question is: how does this work? I assume it's allocating it on the stack? Is this different from using alloca()?
Practically, I found some code that does this:
void bar(size_t chunkSize) {
CFReadStreamRef foo = NULL;
// ...some stuff to init foo...
while (stuffToDo) {
UInt8 buffer[chunkSize];
// ...read some data from stream into buffer
// using CFReadStreamRead()...
}
}
This works. However, when I move the buffer allocation from inside the loop to the first line of the function (directly before foo is declared), the function... stops working. In the debugger it gets to the first access of local variables and then just... exits. I don't see any exceptions being thrown, it doesn't crash, it just program carries on running (in reality the function returns a string and that return value is NULL, which is what the return variable is initialized to). I'm not sure what's going on. The second part of my questions is, in light of the first part, what the heck is going on?
it is legal in C99, although dangerous, and yes -- it is like alloca.
because it's like alloca, you want reasonably sized arrays when allocating on the stack. i am not sure if this is defined if the length is zero, but you could definitely cause a stack overflow if the array is 'large enough' to do so.
as far as what is going on -- pulling it out of the loop should make no difference if the sizes are reasonable. i suspect you are seeing undefined behavior because a parameter value is too large (or perhaps 0) -- you should validate the chunkSize parameter. the assembly will tell you why pulling it out of the loop makes a difference (assuming everything else in the program is well-formed).
I am having difficulty understanding why the following code is giving me the numbers below. Can anyone explain this conversion from float to int? (pCLocation is a CGPoint)
counter = 0;
pathCells[counter][0].x = pCLocation.x;
pathCells[counter][0].y = pCLocation.y;
cellCount[counter]++;
NSLog(#"%#",[NSString stringWithFormat:#"pCLocation at:
%f,%f",pCLocation.x,pCLocation.y]);
NSLog(#"%#",[NSString stringWithFormat:#"path cell 0: %i,%i",
pathCells[counter][cellCount[counter-1]].x,pathCells[counter][cellCount[counter]].y]);
2012-03-09 01:17:37.165 50LevelsBeta1[1704:207] pCLocation at: 47.000000,16.000000
2012-03-09 01:17:37.172 50LevelsBeta1[1704:207] path cell 0: 0,1078427648
Assuming your code is otherwise correct:
I think it would help you to understand how NSLog and other printf-style functions work. When you call NSLog(#"%c %f", a_char, a_float), your code pushes the format string and values onto the stack, then jumps to the start of that function's code. Since NSLog accepts a variable number of arguments, it doesn't know how much to pop off the stack yet. It knows at least there is a format string, so it pops that off and begins to scan it. When it finds a format specifier %c, it knows to pop one byte off the stack and print that value. Then it finds %f, so now it knows to pop another 32 bits and print that as a floating point value. Then it reaches the end of the format string, so it's done.
Now here's the kicker: if you lie to NSLog and tell it you are providing a int but actually provide a float, it has no way to know you are lying. It simply assumes you are telling the truth and prints whatever bits it finds in memory however you asked it to be printed.
That's why you are seeing weird values: you are printing a floating point value as though it were an int. If you really want an int value, you should either:
Apply a cast: NSLog(#"cell.x: %i", (int)cell.x);
Leave it a float but use the format string to hide the decimals: NSLog(#"cell.x: %.0f", cell.x);
(Alternate theory, still potentially useful.)
You might be printing out the contents of uninitialized memory.
In the code you've given, counter = 0 and is never changed. So you assign values to:
pathCells[0][0].x = pCLocation.x;
pathCells[0][0].y = pCLocation.y;
cellCount[0]++;
Then you print:
pathCells[0][cellCount[-1]].x
pathCells[0][cellCount[0]].y
I'm pretty sure that cellCount[-1] isn't what you want. C allows this because even though you think of it as working with an array of a specific size, foo[bar] really just means grab the value at memory address foo plus offset bar. So an index of -1 just means take one step back. That's why you don't get a warning or error, just junk data.
You should clarify what pathCells, cellCount, and counter are and how they relate to each other. I think you have a bug in how you are combining these things.
I have a char* string1 = "HELLOPEOPLE", and I have another char* portion = string+5. So portion points to the location in memory of "PEOPLE". My question is how can I get portion to be "PEOPLEHELLO" without changing string1.
I am asking this because I working on the cyclic permutations for the Burrows Wheeler Transform. For example is to get a matrix like this from the word PLAY (Example word).
PLAY
YPLA
AYPL
LAYP
Is there any way I can get YPLA without changing the the PLAY, just using indexes (references to points in memory)
?
You cannot.
You can, however, print portion and the first 5 characters of string1
printf("%s%5.5s\n", portion, string1);
Or print portion and the part of string1 before portion
int len = portion - string1;
printf("%s%*.*s\n", portion, len, len, string1);
You can't, unless you create a new string and copy in it the portions in the desired order.
You can use strncpy and strncat, from the C standard library:
char *target = calloc(strlen(string1)+1, 1)
strncpy(target, portion, 6);
strncat(target, string1, 5);
portion = target; /* Sets portion to be HELLOPEOPLE */
I have this code:
unsigned int k=(len - sizeof(MSG_INFO));
NSLog(#"%d",k);
for( unsigned int ix = 0; ix < k; ix++)
{
m_pOutPacket->m_buffer[ix] = (char)(pbuf[ix + sizeof(MSG_INFO)]);
}
The problem is, when:
len = 0 and sizeof(MSG_INFO)=68;
k=-68;
This condition gets into the for loop and is continuing for infinite times.
Your code says: unsigned int k. So k isn't -68, it's unsigned. This makes k a very big number, based around a 4 byte int, it would be 4294967210. This is obviously quite a lot more than 0, so it's going to take your for loop a while to get that high, although it would terminate eventually.
The reason you think that it's -86, is that when you print it out with a function like NSLog, it has no direct knowledge about the arguments passed in, it determines how to treat the arguments, based around the format string, supplied as the first argument.
You're calling:
This:
NSLog(#"%d",k);
This tells NSLog to treat the argument as a signed int (%d). You should be doing this:
NSLog(#"%u",k);
So that NSLog treats the argument as the type that it is: unsigned (%u). See the NSLog documentation.
As it stands, I'd expect your buffer to overrun, trashing memory as the loop runs and your application to crash.
After reflecting, I believe #FreeAsInBeer is correct and you don't want to iterate through the for loop in this situation and you could probably fix this by using signed ints. However, It seems to me like you would be better off, checking len > sizeof(MSG_INFO) and if this isn't the case handling it differently. Most situations I can think of, I wouldn't want to perform any processing after the for loop, if I'd failed to read sufficient information for a message...
I'm not really sure what is going on here, as the loop should never execute. I've loaded up your code, and it seems that the unsigned part of your int declaration is causing the issues. If you remove both of your unsigned specifiers, your code will execute as it should, without ever entering the loop.